68 resultados para AFFERENT LIMB


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of the ionospheric E region during total solar eclipses in the period 1932-1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, phi, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, therefore, allow direct comparisons between different eclipses. The results show that the fraction of ionising radiation emitted by the limb corona has a clear solar cycle variation and that the underlying trend shows this fraction has been increasing since 1932. Data from the SOHO spacecraft are used to study the effects of short-term variability and it is shown that the observed long-term rise in phi has a negligible probability of being a chance occurrence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decreases, FDs) are well known to be associated with the near-Earth passage of solar wind structures resulting from corotating interaction regions (CIRs) and transient coronal mass ejections (CMEs). We report on four FDs seen at ground-based neutron monitors which cannot be immediately associated with significant structures in the local solar wind. Similarly, there are significant near-Earth structures which do not produce any corresponding GCR variation. Three of the FDs are during the STEREO era, enabling in situ and remote observations from three well-separated heliospheric locations. Extremely large CMEs passed the STEREO-A spacecraft, which was behind the West limb of the Sun, approximately 2–3 days before each near- Earth FD. Solar wind simulations suggest that the CMEs combined with pre-existing CIRs, enhancing the pre-existing barriers to GCR propagation. Thus these observations provide strong evidence for the modulation of GCR flux by remote solar wind structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss of motor function at the elbow joint can result as a consequence of stroke. Stroke is a clinical illness resulting in long lasting neurological deficits often affecting somatosensory and motor cortices. More than half of those that recover from a stroke survive with disability in their upper arm and need rehabilitation therapy to help in regaining functions of daily living. In this paper, we demonstrated a prototype of a low-cost, ultra-light and wearable soft robotic assistive device that could aid administration of elbow motion therapies to stroke patients. In order to assist the rotation of the elbow joint, the soft modules which consist of soft wedge-like cellular units was inflated by air to produce torque at the elbow joint. Highly compliant rotation can be naturally realised by the elastic property of soft silicone and pneumatic control of air. Based on the direct visual-actuation control, a higher control loop utilised visual processing to apply positional control, the lower control loop was implemented by an electronic circuit to achieve the desired pressure of the soft modules by Pulse Width Modulation. To examine the functionality of the proposed soft modular system, we used an anatomical model of the upper limb and performed the experiments with healthy participants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aim to develop an efficient robotic system for stroke rehabilitation, in which a robotic arm moves the hemiplegic upper limb when the patient tries to move it. In order to achieve this goal we have considered a method to detect the patient's intended motion using EEG (Electroencephalogram), and have designed a rehabilitation robot based on a Redundant Drive Method. In this paper, we propose an EEG driven rehabilitation robot system and present initial results evaluating the feasibility of the proposed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper tropospheric and lower stratospheric measurements from the Aura Microwave Limb Sounder (MLS), the Aura High Resolution Dynamics Limb Sounder (HIRDLS), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS) are used to present the first global climatological comparison of extratropical, nonpolar trace gas distributions in double-tropopause (DT) and single-tropopause (ST) regions. Stratospheric tracers, O3, HNO3, and HCl, have lower mixing ratios ∼2–8 km above the primary (lowermost) tropopause in DT than in ST regions in all seasons, with maximum Northern Hemisphere (NH) differences near 50% in winter and 30% in summer. Southern Hemisphere winter differences are somewhat smaller, but summer differences are similar in the two hemispheres. H2O in DT regions of both hemispheres shows strong negative anomalies in November through February and positive anomalies in July through October, reflecting the strong seasonal cycle in H2O near the tropical tropopause. CO and other tropospheric tracers examined have higher DT than ST values 2–7 km above the primary tropopause, with the largest differences in winter. Large DT-ST differences extend to high NH latitudes in fall and winter, with longitudinal maxima in regions associated with enhanced wave activity and subtropical jet variations. Results for O3 and HNO3 agree closely between MLS and HIRDLS, and differences from ACE-FTS are consistent with its sparse and irregular midlatitude sampling. Consistent signatures in climatological trace gas fields provide strong evidence that transport from the tropical upper troposphere into the layer between double tropopauses is an important pathway for stratosphere-troposphere exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud.Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse.The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming the sensing surface becomes normal to the solar beam direction at a maximum swing. Both approaches, essentially independent,give values that agree with theoretical expectations for the eclipse-induced radiation changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease- causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15. Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson’s disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.