125 resultados para boundary integral equation method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic aperture radar (SAR) data have proved useful in remote sensing studies of deserts, enabling different surfaces to be discriminated by differences in roughness properties. Roughness is characterized in SAR backscatter models using the standard deviation of surface heights (sigma), correlation length (L) and autocorrelation function (rho(xi)). Previous research has suggested that these parameters are of limited use for characterizing surface roughness, and are often unreliable due to the collection of too few roughness profiles, or under-sampling in terms of resolution or profile length (L-p). This paper reports on work aimed at establishing the effects of L-p and sampling resolution on SAR backscatter estimations and site discrimination. Results indicate significant relationships between the average roughness parameters and L-p, but large variability in roughness parameters prevents any clear understanding of these relationships. Integral equation model simulations demonstrate limited change with L-p and under-estimate backscatter relative to SAR observations. However, modelled and observed backscatter conform in pattern and magnitude for C-band systems but not for L-band data. Variation in surface roughness alone does not explain variability in site discrimination. Other factors (possibly sub-surface scattering) appear to play a significant role in controlling backscatter characteristics at lower frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have favoured the variational (secular equation) method for the determination of the (ro-) vibrational energy levels of polyatomic molecules. We use predominantly the Watson Hamiltonian in normal coordinates and an associated given potential in the variational code 'Multimode'. The dominant cost is the construction and diagonalization of matrices of ever-increasing size. Here we address this problem, using pertubation theory to select dominant expansion terms within the Davidson-Liu iterative diagonalization method. Our chosen example is the twelve-mode molecule methanol, for which we have an ab initio representation of the potential which includes the internal rotational motion of the OH group relative to CH3. Our new algorithm allows us to obtain converged energy levels for matrices of dimensions in excess of 100 000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we consider the rendering equation derived from the illumination model called Cook-Torrance model. A Monte Carlo (MC) estimator for numerical treatment of the this equation, which is the Fredholm integral equation of second kind, is constructed and studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne measurements within the urban mixing layer (360 m) over Greater London are used to quantify CO2 emissions at the meso-scale. Daytime CO2 fluxes, calculated by the Integrative Mass Boundary Layer (IMBL) method, ranged from 46 to 104 μmol CO2 m−2 s−1 for four days in October 2011. The day-to-day variability of IMBL fluxes is at the same order of magnitude as for surface eddy-covariance fluxes observed in central London. Compared to fluxes derived from emissions inventory, the IMBL method gives both lower (by −37%) and higher (by 19%) estimates. The sources of uncertainty of applying the IMBL method in urban areas are discussed and guidance for future studies is given.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.