72 resultados para Rate-based flow control
Resumo:
The National Grid Company plc. owns and operates the electricity transmission network in England and Wales, the day to day running of the network being carried out by teams of engineers within the national control room. The task of monitoring and operating the transmission network involves the transfer of large amounts of data and a high degree of cooperation between these engineers. The purpose of the research detailed in this paper is to investigate the use of interfacing techniques within the control room scenario, in particular, the development of an agent based architecture for the support of cooperative tasks. The proposed architecture revolves around the use of interface and user supervisor agents. Primarily, these agents are responsible for the flow of information to and from individual users and user groups. The agents are also responsible for tackling the synchronisation and control issues arising during the completion of cooperative tasks. In this paper a novel approach to human computer interaction (HCI) for power systems incorporating an embedded agent infrastructure is presented. The agent architectures used to form the base of the cooperative task support system are discussed, as is the nature of the support system and tasks it is intended to support.
Resumo:
A number of commonly encountered simple neural network types are discussed, with particular attention being paid to their applicability in automation and control when applied to food processing. In the first instance n-tuple networks are considered, these being particularly useful for high speed production checking operations. Subsequently backpropagation networks are discussed, these being useful both in a more familiar feedback control arrangement and also for such things as recipe prediction.
Resumo:
This paper describes the implementation, using a microprocessor, of a self-tuning control algorithm on a heating system. The algorithm is based on recursive least squares parameter estimation with a state-space, pole placement design criterion and shows how the controller behaves when applied to an actual system.
Resumo:
Using the record of 30 flank eruptions over the last 110 years at Nyamuragira, we have tested the relationship between the eruption dynamics and the local stress field. There are two groups of eruptions based on their duration (< 80days >) that are also clustered in space and time. We find that the eruptions fed by dykes parallel to the East African Rift Valley have longer durations (and larger volumes) than those eruptions fed by dykes with other orientations. This is compatible with a model for compressible magma transported through an elastic-walled dyke in a differential stress field from an over-pressured reservoir (Woods et al., 2006). The observed pattern of eruptive fissures is consistent with a local stress field modified by a northwest-trending, right lateral slip fault that is part of the northern transfer zone of the Kivu Basin rift segment. We have also re-tested with new data the stochastic eruption models for Nyamuragira of Burt et al. (1994). The time-predictable, pressure-threshold model remains the best fit and is consistent with the typically observed declining rate of sulphur dioxide emission during the first few days of eruption with lava emission from a depressurising, closed, crustal reservoir. The 2.4-fold increase in long-term eruption rate that occurred after 1977 is confirmed in the new analysis. Since that change, the record has been dominated by short-duration eruptions fed by dykes perpendicular to the Rift. We suggest that the intrusion of a major dyke during the 1977 volcano-tectonic event at neighbouring Nyiragongo volcano inhibited subsequent dyke formation on the southern flanks of Nyamuragira and this may also have resulted in more dykes reaching the surface elsewhere. Thus that sudden change in output was a result of a changed stress field that forced more of the deep magma supply to the surface. Another volcano-tectonic event in 2002 may also have changed the magma output rate at Nyamuragira.
Resumo:
This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.
Resumo:
Left inferior frontal gyrus (IFG) is a critical neural substrate for the resolution of proactive interference (PI) in working memory. We hypothesized that left IFG achieves this by controlling the influence of familiarity- versus recollection-based information about memory probes. Consistent with this idea, we observed evidence for an early (200 msec)-peaking signal corresponding to memory probe familiarity and a late (500 msec)-resolving signal corresponding to full accrual of trial-related contextual ("recollection-based") information. Next, we applied brief trains of repetitive transcranial magnetic stimulation (rTMS) time locked to these mnemonic signals, to left IFG and to a control region. Only early rTMS of left IFG produced a modulation of the false alarm rate for high-PI probes. Additionally, the magnitude of this effect was predicted by individual differences in susceptibility to PI. These results suggest that left IFG-based control may bias the influence of familiarity- and recollection-based signals on recognition decisions.
Resumo:
Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.
Resumo:
Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.
Resumo:
In Part I of this study it was shown that moving from a moisture-convergent- to a relative-humidity-dependent organized entrainment rate in the formulation for deep convection was responsible for significant advances in the simulation of the Madden – Julian Oscillation (MJO) in the ECMWF model. However, the application of traditional MJO diagnostics were not adequate to understand why changing the control on convection had such a pronounced impact on the representation of the MJO. In this study a set of process-based diagnostics are applied to the hindcast experiments described in Part I to identify the physical mechanisms responsible for the advances in MJO simulation. Increasing the sensitivity of the deep convection scheme to environmental moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid troposphere. Due to the modified precipitation – moisture relationship more moisture is able to build up, which effectively preconditions the tropical atmosphere for the t ransition t o d eep convection. R esults from this study suggest that a tropospheric moisture control on convection is key to simulating the interaction between the convective heating and the large-scale wave forcing associated with the MJO.
Resumo:
Microcontroller-based peak current mode control of a buck converter is investigated. The new solution uses a discrete time controller with digital slope compensation. This is implemented using only a single-chip microcontroller to achieve desirable cycle-by-cycle peak current limiting. The digital controller is implemented as a two-pole, two-zero linear difference equation designed using a continuous time model of the buck converter and a discrete time transform. Subharmonic oscillations are removed with digital slope compensation using a discrete staircase ramp. A 16 W hardware implementation directly compares analog and digital control. Frequency response measurements are taken and it is shown that the crossover frequency and expected phase margin of the digital control system match that of its analog counterpart.
Resumo:
The situation considered is that of a zonally symmetric model of the middle atmosphere subject to a given quasi-steady zonal force F̄, conceived to be the result of irreversible angular momentum transfer due to the upward propagation and breaking of Rossby and gravity waves together with any other dissipative eddy effects that may be relevant. The model's diabatic heating is assumed to have the qualitative character of a relaxation toward some radiatively determined temperature field. To the extent that the force F̄ may be regarded as given, and the extratropical angular momentum distribution is realistic, the extratropical diabatic mass flow across a given isentropic surface may be regarded as controlled exclusively by the F̄ distribution above that surface (implying control by the eddy dissipation above that surface and not, for instance, by the frequency of tropopause folding below). This “downward control” principle expresses a critical part of the dynamical chain of cause and effect governing the average rate at which photochemical products like ozone become available for folding into, or otherwise descending into, the extratropical troposphere. The dynamical facts expressed by the principle are also relevant, for instance, to understanding the seasonal-mean rate of upwelling of water vapor to the summer mesopause, and the interhemispheric differences in stratospheric tracer transport. The robustness of the principle is examined when F̄ is time-dependent. For a global-scale, zonally symmetric diabatic circulation with a Brewer-Dobson-like horizontal structure given by the second zonally symmetric Hough mode, with Rossby height HR = 13 km in an isothermal atmosphere with density scale height H = 7 km, the vertical partitioning of the unsteady part of the mass circulation caused by fluctuations in F̄ confined to a shallow layer LF̄ is always at least 84% downward. It is 90% downward when the force fluctuates sinusoidally on twice the radiative relaxation timescale and 95% if five times slower. The time-dependent adjustment when F̄ is changed suddenly is elucidated, extending the work of Dickinson (1968), when the atmosphere is unbounded above and below. Above the forcing, the adjustment is characterized by decay of the meridional mass circulation cell at a rate proportional to the radiative relaxation rate τr−1 divided by {1 + (4H2/HR2)}. This decay is related to the boundedness of the angular momentum that can be taken up by the finite mass of air above LF̄ without causing an ever-increasing departure from thermal wind balance. Below the forcing, the meridional mass circulation cell penetrates downward at a speed τr−1 HR2/H. For the second Hough mode, the time for downward penetration through one density scale height is about 6 days if the radiative relaxation time is 20 days, the latter being representative of the lower stratosphere. At any given altitude, a steady state is approached. The effect of a rigid lower boundary on the time-dependent adjustment is also considered. If a frictional planetary boundary layer is present then a steady state is ultimately approached everywhere, with the mass circulation extending downward from LF̄ and closing via the boundary layer. Satellite observations of temperature and ozone are used in conjunction with a radiative transfer scheme to estimate the altitudes from which the lower stratospheric diabatic vertical velocity is controlled by the effective F̄ in the real atmosphere. The data appear to indicate that about 80% of the effective control is usually exerted from below 40 km but with significant exceptions up to 70 km (in the high latitude southern hemispheric winter). The implications for numerical modelling of chemical transport are noted.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by Heyd-Scuseria-Ernzerhof screened hybrid functional calculations.
Resumo:
The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full attention condition and a divided attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided attention condition compared to the full attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children’s time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.