61 resultados para NUCLEI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model incorporating many of the important processes at work in the crystallization of emulsions is presented. The model describes nucleation within the discontinuous domain of an emulsion, precipitation in the continuous domain, transport of monomers between the two domains, and formation and subsequent growth of crystals in both domains. The model is formulated as an autonomous system of nonlinear, coupled ordinary differential equations. The description of nucleation and precipitation is based upon the Becker–Döring equations of classical nucleation theory. A particular feature of the model is that the number of particles of all species present is explicitly conserved; this differs from work that employs Arrhenius descriptions of nucleation rate. Since the model includes many physical effects, it is analyzed in stages so that the role of each process may be understood. When precipitation occurs in the continuous domain, the concentration of monomers falls below the equilibrium concentration at the surface of the drops of the discontinuous domain. This leads to a transport of monomers from the drops into the continuous domain that are then incorporated into crystals and nuclei. Since the formation of crystals is irreversible and their subsequent growth inevitable, crystals forming in the continuous domain effectively act as a sink for monomers “sucking” monomers from the drops. In this case, numerical calculations are presented which are consistent with experimental observations. In the case in which critical crystal formation does not occur, the stationary solution is found and a linear stability analysis is performed. Bifurcation diagrams describing the loci of stationary solutions, which may be multiple, are numerically calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Preliminary results are presented from a modelling study directed at the spatial variation of frazil ice formation and its effects on flow underneath large ice shelves. The chosen plume and frazil models are briefly introduced, and results from two simplified cases are outlined. It is found that growth and melting dominate the frazil model in the short term. Secondary nucleation converts larger crystals into several nuclei due to crystal collisions (microattrition) and fluid shear and therefore governs the ice crystal dynamics after the initial supercooling has been quenched. Frazil formation is found to have a significant depth-dependence in an idealised study of an Ice Shelf Water plume. Finally, plans for more extensive and realistic studies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have extensively evaluated the response of cloud-base drizzle rate (Rcb; mm day–1) in warm clouds to liquid water path (LWP; g m–2) and to cloud condensation nuclei (CCN) number concentration (NCCN; cm–3), an aerosol proxy. This evaluation is based on a 19-month long dataset of Doppler radar, lidar, microwave radiometers and aerosol observing systems from the Atmospheric Radiation Measurement (ARM) Mobile Facility deployments at the Azores and in Germany. Assuming 0.55% supersaturation to calculate NCCN, we found a power law , indicating that Rcb decreases by a factor of 2–3 as NCCN increases from 200 to 1000 cm–3 for fixed LWP. Additionally, the precipitation susceptibility to NCCN ranges between 0.5 and 0.9, in agreement with values from simulations and aircraft measurements. Surprisingly, the susceptibility of the probability of precipitation from our analysis is much higher than that from CloudSat estimates, but agrees well with simulations from a multi-scale high-resolution aerosol-climate model. Although scale issues are not completely resolved in the intercomparisons, our results are encouraging, suggesting that it is possible for multi-scale models to accurately simulate the response of LWP to aerosol perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLLA is a thermoplastic biopolymer and can be used in industrial applications for medical and filtration applications. The brittleness of PLLA is attributed to slow crystallization rates and its glass transition temperature (Tg) is high (60 °C); for this reason, its applications are limited. The orientation, morphology, and crystal structure of the electrospun fibers was investigated by SEM, POM, DSC, FTIR, XRD, and SAXS. Combining with additives leads to a large decrease of fiber diameter, viscosity, and changes of fiber morphology and crystal structure compared to pure PLLA. DSC showed that the Tg of PLLA decreased about 15 °C and there was no change in relaxation enthalpy by the addition of plasticizer. FT-IR indicate a strong interaction between PLLA and additives; a new band appears in the PLLA blend at 1,756 cm−1 at room temperature as a crystalline band without any annealing. In addition, WAXD indicated that the intensities of the two peaks at (200/110) and (203) increased for the blend at room temperature without any annealing in comparison with PLLA; this means that PHB crystallizes in the amorphous region of PLLA. The POM experiments agree with the results from DSC, FTIR, and WAXS measurements, confirming that adding PHB results in an increase in the number of nuclei with much smaller spherulites and enhances the crystallization behavior of this material, thereby improving its potential for applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth’s atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies with a diverse array of 22 purified condensed tannin (CT) samples from nine plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans-flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR spectroscopy. The method was developed from samples containing 44 to ~100% CT, PC/PD ratios ranging from 0/100 to 99/1, and cis/trans ratios from 58/42 to 95/5 as determined by thiolysis with benzyl mercaptan. Integration of cross-peak contours of H/C-6' signals from PC and of H/C-2',6' signals from PD yielded nuclei adjusted estimates that were highly correlated with PC/PD ratios obtained by thiolysis (R2 = 0.99). Cis/trans-flavan-3-ol ratios, obtained by integration of the respective H/C-4 cross-peak contours, were also related to determinations made by thiolysis (R2 = 0.89). Overall, 1H-13C HSQC NMR spectroscopy appears to be a viable alternative to thiolysis for estimating PC/PD and cis/trans ratios of CT, if precautions are taken to avoid integration of cross-peak contours of contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the tensor terms in the Skyrme interaction is studied for their effect in dynamic calculations where non-zero contributions to the mean-field may arise, even when the starting nucleus, or nuclei are even-even and have no active time-odd potentials in the ground state. We study collisions in the test-bed 16O-16O system, and give a qualitative analysis of the behaviour of the time-odd tensor-kinetic density, which only appears in the mean field Hamiltonian in the presence of the tensor force. We find an axial excitation of this density is induced by a collision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclides 157W and 161Os have been discovered in reactions of 58Ni ion beams with a 106Cd target. The 161Os α -decay energy and half-life were 6890±12 keV and 640±60 μs. The daughter 157W nuclei β -decayed with a half-life of 275±40 ms, populating both low-lying α-decaying states in 157Ta, which is consistent with a 7/2− ground state in 157W. Fine structure observed in the α decay of 161Os places the lowest excited state in 157W with Iπ=9/2− at 318±30 keV. The branching ratio of View the MathML source indicates that 161Os also has a 7/2− ground state. Shell-model calculations analysing the effects of monopole shifts and a tensor force on the relative energies of 2f7/2 and 1h9/2 neutron states in N=83 isotones are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy of the vh9/2 orbital in nuclei above N = 82 drops rapidly in energy relative to the vf7/2 orbital as the occupancy of the πh11/2 orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides 161Os and 157W, and studied the decays of the proton emitter 160Re in detail. The 161Os and 160Re nuclei were produced in reactions of 290, 300 and 310 MeV 58Ni ions with an isotopically enriched 106Cd target, separated in‐flight using the RITU separator and implanted into the GREAT spectrometer. The 161Os α a decays populated the new nuclide 157W, which decayed by β‐particle emission. The β decay fed the known α‐decaying 1/2+ and 11/2− states in 157Ta, which is consistent with a vf7/2 ground state in 157W. The measured α‐decay energy and half‐life for 161Os correspond to a reduced α‐decay width that is compatible with s‐wave α‐particle emission, implying that its ground state is also a vf7/2 state. Over 7000 160Re nuclei were produced and the γ decays of a new isomeric state feeding the πd3/2 level in 160Re were discovered, but no evidence for the proton or a decay of the expected πh11/2 state could be found. The isomer decays offer a natural explanation for this non‐observation and provides a striking example of the influence of the near degeneracy of the vh9/2 and vf7/2 orbitals on the properties of nuclei in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dystrophin, the product of the Duchenne muscular dystrophy (DMD) gene, was studied in muscle from 16 human fetuses at risk for the disease. Eleven high risk (greater than 95% probability) and 5 low-risk (less than 25% probability) fetuses were studied with antibodies raised to different regions of the protein. All low-risk fetuses showed a similar pattern to that of normal fetuses of a comparable age: using Western blot analysis, a protein was detected of similar size and abundance to that of normal fetuses (i.e. smaller molecular weight than that of adult muscle); immunocytochemistry showed uniform sarcolemmal staining in fetuses older than 18 weeks gestation and differential staining of myotubes at different stages of development (distinguished by size) in younger fetuses (less than 15 weeks gestation). In contrast, Western blot analysis of high-risk fetuses detected low levels of dystrophin in 4 cases; 7 fetuses had no detectable protein. Immunocytochemistry with some dystrophin antibodies showed weak staining of the sarcolemma and around central nuclei in younger fetuses; in older fetuses there was little sarcolemmal staining with any antibody other than occasional positive fibres. These results indicate that careful study of dystrophin in fetuses at risk for DMD can be used to establish the clinical phenotype and provide additional information for future family counselling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria.