121 resultados para Free Boundary Value Problem
Resumo:
In this paper, we summarise this recent progress to underline the features specific to this nonlinear elliptic case, and we give a new classification of boundary conditions on the semistrip that satisfy a necessary condition for yielding a boundary value problem can be effectively linearised. This classification is based on formulation the equation in terms of an alternative Lax pair.
Resumo:
The solution of an initial-boundary value problem for a linear evolution partial differential equation posed on the half-line can be represented in terms of an integral in the complex (spectral) plane. This representation is obtained by the unified transform introduced by Fokas in the 90's. On the other hand, it is known that many initial-boundary value problems can be solved via a classical transform pair, constructed via the spectral analysis of the associated spatial operator. For example, the Dirichlet problem for the heat equation can be solved by applying the Fourier sine transform pair. However, for many other initial-boundary value problems there is no suitable transform pair in the classical literature. Here we pose and answer two related questions: Given any well-posed initial-boundary value problem, does there exist a (non-classical) transform pair suitable for solving that problem? If so, can this transform pair be constructed via the spectral analysis of a differential operator? The answer to both of these questions is positive and given in terms of augmented eigenfunctions, a novel class of spectral functionals. These are eigenfunctions of a suitable differential operator in a certain generalised sense, they provide an effective spectral representation of the operator, and are associated with a transform pair suitable to solve the given initial-boundary value problem.
Resumo:
We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions.
Resumo:
We solve an initial-boundary problem for the Klein-Gordon equation on the half line using the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas. The approach we present can be also used to solve more complicated boundary value problems for this equation, such as problems posed on time-dependent domains. Furthermore, it can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this respect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon equation.
Resumo:
We study the elliptic sine-Gordon equation in the quarter plane using a spectral transform approach. We determine the Riemann-Hilbert problem associated with well-posed boundary value problems in this domain and use it to derive a formal representation of the solution. Our analysis is based on a generalization of the usual inverse scattering transform recently introduced by Fokas for studying linear elliptic problems.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.
Resumo:
A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.
Resumo:
In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.
Resumo:
We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics
Resumo:
We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)
Resumo:
A simple theoretical model for the intensification of tropical cyclones and polar lows is developed using a minimal set of physical assumptions. These disturbances are assumed to be balanced systems intensifying through the WISHE (Wind-Induced Surface Heat Exchange) intensification mechanism, driven by surface fluxes of heat and moisture into an atmosphere which is neutral to moist convection. The equation set is linearized about a resting basic state and solved as an initial-value problem. A system is predicted to intensify with an exponential perturbation growth rate scaled by the radial gradient of an efficiency parameter which crudely represents the effects of unsaturated processes. The form of this efficiency parameter is assumed to be defined by initial conditions, dependent on the nature of a pre-existing vortex required to precondition the atmosphere to a state in which the vortex can intensify. Evaluation of the simple model using a primitive-equation, nonlinear numerical model provides support for the prediction of exponential perturbation growth. Good agreement is found between the simple and numerical models for the sensitivities of the measured growth rate to various parameters, including surface roughness, the rate of transfer of heat and moisture from the ocean surface, and the scale for the growing vortex.
Resumo:
A basic principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: the underlying data generating mechanism exhibits known symmetric property and the underlying process obeys a set of given boundary value constraints. The class of orthogonal least squares regression algorithms can readily be applied to construct parsimonious grey-box RBF models with enhanced generalisation capability.