695 resultados para Event 1 – Reading E-mails.
Resumo:
We present a detailed investigation of a magnetospheric flux transfer event (FTE) seen by the Active Magnetospheric Tracer Explorer (AMPTE) UKS and IRM satellites around 1046 UT on October 28, 1984. This event has been discussed many times previously in the literature and has been cited as support for a variety of theories of FTE formation. We make use of a model developed to reproduce ion precipitations seen in the cusp ionosphere. The analysis confirms that the FTE is well explained as a brief excursion into an open low-latitude boundary layer (LLBL), as predicted by two theories of magnetospheric FTEs: namely, that they are bulges in the open LLBL due to reconnection rate enhancements or that they are indentations of the magnetopause by magnetosheath pressure increases (but in the presence of ongoing steady reconnection). The indentation of the inner edge of the open LLBL that these two models seek to explain is found to be shallow for this event. The ion model reproduces the continuous evolution of the ion distribution function between the sheath-like population at the event center and the surrounding magnetospheric populations; it also provides an explanation of the high-pressure core of the event as comprising field lines that were reconnected considerably earlier than those that are draped over it to give the event boundary layer. The magnetopause transition parameter is used to isolate a field rotation on the boundaries of the core, which is subjected to the tangential stress balance test. The test identifies this to be a convecting structure, which is neither a rotational discontinuity (RD) nor a contact discontinuity, but could possibly be a slow shock. In addition, evidence for ion reflection off a weak RD on the magnetospheric side of this structure is found. The event structure is consistent in many ways with features predicted for the open LLBL by analytic MHD theories and by MHD and hybrid simulations. The de Hoffman-Teller velocity of the structure is significantly different from that of the magnetosheath flow, indicating that it is not an indentation caused by a high-pressure pulse in the sheath but is consistent with the motion of newly opened field lines (different from the sheath flow because of the magnetic tension force) deduced from the best fit to the ion data. However, we cannot here rule out the possibility that the sheath flow pattern has changed in the long interval between the two satellites observing the FTE and subsequently emerging into the magnetosheath; thus this test is not conclusive in this particular case. Analysis of the fitted elapsed time since reconnection shows that the core of the event was reconnected in one pulse and the event boundary layer was reconnected in a subsequent pulse. Between these two pulses is a period of very low (but nonzero) reconnection rate, which lasts about 14 mins. Thus the analysis supports, but does not definitively verify, the concept that the FTE is a partial passage into an open LLBL caused by a traveling bulge in that layer produced by a pulse in reconnection rate.
Resumo:
We analyze of ion populations observed by the NOAA-12 satellite within dayside auroral transients. The data are matched with an open magnetopause model which allows for the transmission of magnetosheath ions across one or both of the two Alfvén waves which emanate from the magnetopause reconnection site. It also allows for reflection and acceleration of ions of magnetospheric origin by these waves. From the good agreement found between the model and the observations, we propose that the events and the low-latitude boundary precipitation are both on open field lines.
Resumo:
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.
Resumo:
The United Nations Framework Convention on Climate Change (UNFCCC) has established the Warsaw International Mechanism (WIM) to deal with loss and damage associated with climate change impacts, including extreme events, in developing countries. It is not yet known whether events will need to be attributed to anthropogenic climate change to be considered under the WIM. Attribution is possible for some extreme events- a climate model assessment can estimate how greenhouse gas emissions have affected the likelihood of their occurrence. Dialogue between scientists and stakeholders is required to establish whether, and how, this science could play a role in the WIM.
Resumo:
The eye movements of 24 children and 24 adults were monitored to compare how they read sentences containing plausible, implausible, and anomalous thematic relations. In the implausible condition the incongruity occurred due to the incompatibility of two objects involved in the event denoted by the main verb. In the anomalous condition the direct object of the verb was not a possible verb argument. Adults exhibited immediate disruption with the anomalous sentences as compared to the implausible sentences as indexed by longer gaze durations on the target word. Children exhibited the same pattern of effects as adults as far as the anomalous sentences were concerned, but exhibited delayed effects of implausibility. These data indicate that while children and adults are alike in their basic thematic assignment processes during reading, children may be delayed in the efficiency with which they are able to integrate pragmatic and real world knowledge into their discourse representation.
Resumo:
Studies show cross-linguistic differences in motion event encoding, such that English speakers preferentially encode manner of motion more than Spanish speakers, who preferentially encode path of motion. Focusing on native Spanish speaking children (aged 5;00-9;00) learning L2 English, we studied path and manner verb preferences during descriptions of motion stimuli, and tested the linguistic relativity hypothesis by investigating categorization preferences in a non-verbal similarity judgement task of motion clip triads. Results revealed L2 influence on L1 motion event encoding, such that bilinguals used more manner verbs and fewer path verbs in their L1, under the influence of English. We found no effects of linguistic structure on non-verbal similarity judgements, and demonstrate for the first time effects of L2 on L1 lexicalization in child L2 learners in the domain of motion events. This pattern of verbal behaviour supports theories of bilingual semantic representation that postulate a merged lexico-semantic system in early bilinguals.
Resumo:
Launch event part of Universities Week on Monday 9th Co-researchers from Reading College Learners with Learning Difficulties/Disabilities dept will present their Sensory Objects research in the Museum of English Rural Life (MERL)
Resumo:
In order to gain insights into events and issues that may cause errors and outages in parts of IP networks, intelligent methods that capture and express causal relationships online (in real-time) are needed. Whereas generalised rule induction has been explored for non-streaming data applications, its application and adaptation on streaming data is mostly undeveloped or based on periodic and ad-hoc training with batch algorithms. Some association rule mining approaches for streaming data do exist, however, they can only express binary causal relationships. This paper presents the ongoing work on Online Generalised Rule Induction (OGRI) in order to create expressive and adaptive rule sets real-time that can be applied to a broad range of applications, including network telemetry data streams.
Resumo:
The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing to the event as it unfolded, including the anomalous aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved.
Resumo:
The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapour content in these regions is determined by their ``origins'', here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using ERA40 data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.
Resumo:
A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced.
Resumo:
In all biological processes, protein molecules and other small molecules interact to function and form transient macromolecular complexes. This interaction of two or more molecules can be described by a docking event. Docking is an important phase for structure-based drug design strategies, as it can be used as a method to simulate protein-ligand interactions. Various docking programs exist that allow automated docking, but most of them have limited visualization and user interaction. It would be advantageous if scientists could visualize the molecules participating in the docking process, manipulate their structures and manually dock them before submitting the new conformations to an automated docking process in an immersive environment, which can help stimulate the design/docking process. This also could greatly reduce docking time and resources. To achieve this, we propose a new virtual modelling/docking program, whereby the advantages of virtual modelling programs and the efficiency of the algorithms in existing docking programs will be merged.