77 resultados para Caesium 137, standard deviation
Resumo:
A study of the concurrent relationships between naming speed, phonological awareness and spelling ability in 146 children in Year 3 and 4 of state funded school in SE England (equivalent to US Grades 2 and 3) is reported. Seventy-two children identified as having normal phonological awareness but reduced rapid automatized naming (RAN) performance (1 standard deviation below the mean) participated in the study. A group of 74 children were further identified. These children were matched on phonological awareness, verbal and non verbal IQ, and visual acuity but all members of this group showed normal rapid automatized naming performance. Rapid automatized naming made a significant unique contribution to spelling performance. Further analyses showed that the participants with low naming performance were significantly poorer spellers overall and had a specific difficulty in spelling irregular words. The findings support the view that rapid automatized naming may be indexing processes that are implicated in the establishment of fully specified orthographic representations.
Resumo:
This paper presents an assessment of the impacts of climate change on a series of indicators of hydrological regimes across the global domain, using a global hydrological model run with climate scenarios constructed using pattern-scaling from 21 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Changes are compared with natural variability, with a significant change being defined as greater than the standard deviation of the hydrological indicator in the absence of climate change. Under an SRES (Special Report on Emissions Scenarios) A1b emissions scenario, substantial proportions of the land surface (excluding Greenland and Antarctica) would experience significant changes in hydrological behaviour by 2050; under one climate model scenario (Hadley Centre HadCM3), average annual runoff increases significantly over 47% of the land surface and decreases over 36%; only 17% therefore sees no significant change. There is considerable variability between regions, depending largely on projected changes in precipitation. Uncertainty in projected river flow regimes is dominated by variation in the spatial patterns of climate change between climate models (hydrological model uncertainty is not included). There is, however, a strong degree of consistency in the overall magnitude and direction of change. More than two-thirds of climate models project a significant increase in average annual runoff across almost a quarter of the land surface, and a significant decrease over 14%, with considerably higher degrees of consistency in some regions. Most climate models project increases in runoff in Canada and high-latitude eastern Europe and Siberia, and decreases in runoff in central Europe, around the Mediterranean, the Mashriq, central America and Brasil. There is some evidence that projecte change in runoff at the regional scale is not linear with change in global average temperature change. The effects of uncertainty in the rate of future emissions is relatively small
Resumo:
Abstract Background: The analysis of the Auditory Brainstem Response (ABR) is of fundamental importance to the investigation of the auditory system behaviour, though its interpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analysing the ABR, clinicians are often interested in the identification of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave latency) is a practical tool for the diagnosis of disorders affecting the auditory system. Significant differences in inter-examiner results may lead to completely distinct clinical interpretations of the state of the auditory system. In this context, the aim of this research was to evaluate the inter-examiner agreement and variability in the manual classification of ABR. Methods: A total of 160 ABR data samples were collected, for four different stimulus intensity (80dBHL, 60dBHL, 40dBHL and 20dBHL), from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). Four examiners with expertise in the manual classification of ABR components participated in the study. The Bland-Altman statistical method was employed for the assessment of inter-examiner agreement and variability. The mean, standard deviation and error for the bias, which is the difference between examiners’ annotations, were estimated for each pair of examiners. Scatter plots and histograms were employed for data visualization and analysis. Results: In most comparisons the differences between examiner’s annotations were below 0.1 ms, which is clinically acceptable. In four cases, it was found a large error and standard deviation (>0.1 ms) that indicate the presence of outliers and thus, discrepancies between examiners. Conclusions: Our results quantify the inter-examiner agreement and variability of the manual analysis of ABR data, and they also allows for the determination of different patterns of manual ABR analysis.
Resumo:
Simulations of ozone loss rates using a three-dimensional chemical transport model and a box model during recent Antarctic and Arctic winters are compared with experimental loss rates. The study focused on the Antarctic winter 2003, during which the first Antarctic Match campaign was organized, and on Arctic winters 1999/2000, 2002/2003. The maximum ozone loss rates retrieved by the Match technique for the winters and levels studied reached 6 ppbv/sunlit hour and both types of simulations could generally reproduce the observations at 2-sigma error bar level. In some cases, for example, for the Arctic winter 2002/2003 at 475 K level, an excellent agreement within 1-sigma standard deviation level was obtained. An overestimation was also found with the box model simulation at some isentropic levels for the Antarctic winter and the Arctic winter 1999/2000, indicating an overestimation of chlorine activation in the model. Loss rates in the Antarctic show signs of saturation in September, which have to be considered in the comparison. Sensitivity tests were performed with the box model in order to assess the impact of kinetic parameters of the ClO-Cl2O2 catalytic cycle and total bromine content on the ozone loss rate. These tests resulted in a maximum change in ozone loss rates of 1.2 ppbv/sunlit hour, generally in high solar zenith angle conditions. In some cases, a better agreement was achieved with fastest photolysis of Cl2O2 and additional source of total inorganic bromine but at the expense of overestimation of smaller ozone loss rates derived later in the winter.
Resumo:
Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.
Resumo:
Optimal estimation (OE) and probabilistic cloud screening were developed to provide lake surface water temperature (LSWT) estimates from the series of (advanced) along-track scanning radiometers (ATSRs). Variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. Therefore, the OE retrieval scheme developed is generic (i.e., applicable to all lakes). LSWTs were obtained for 258 of Earth's largest lakes from ATSR-2 and AATSR imagery from 1995 to 2009. Comparison to in situ observations from several lakes yields satellite in situ differences of −0.2 ± 0.7 K for daytime and −0.1 ± 0.5 K for nighttime observations (mean ± standard deviation). This compares with −0.05 ± 0.8 K for daytime and −0.1 ± 0.9 K for nighttime observations for previous methods based on operational sea surface temperature algorithms. The new approach also increases coverage (reducing misclassification of clear sky as cloud) and exhibits greater consistency between retrievals using different channel–view combinations. Empirical orthogonal function (EOF) techniques were applied to the LSWT retrievals (which contain gaps due to cloud cover) to reconstruct spatially and temporally complete time series of LSWT. The new LSWT observations and the EOF-based reconstructions offer benefits to numerical weather prediction, lake model validation, and improve our knowledge of the climatology of lakes globally. Both observations and reconstructions are publically available from http://hdl.handle.net/10283/88.
Resumo:
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.
Resumo:
Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.
Resumo:
Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.
Resumo:
Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system1. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles1–3. Although the models are compared and validated against observations, these estimates remain uncertain. Previous satellite measurements of the direct effect of aerosols contained limited information about aerosol type, and were confined to oceans only4,5. Here we use state-of-the-art satellitebased measurements of aerosols6–8 and surface wind speed9 to estimate the clear-sky direct radiative forcing for 2002, incorporating measurements over land and ocean. We use a Monte Carlo approach to account for uncertainties in aerosol measurements and in the algorithm used. Probability density functions obtained for the direct radiative forcing at the top of the atmosphere give a clear-sky, global, annual average of 21.9Wm22 with standard deviation, 60.3Wm22. These results suggest that present-day direct radiative forcing is stronger than present model estimates, implying future atmospheric warming greater than is presently predicted, as aerosol emissions continue to decline10.
Resumo:
The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct for model departures from observed aerosols. The reanalysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003–2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing is −0.7±0.3Wm−2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of −0.4±0.3Wm−2. The best estimate of globally-averaged, all-sky first indirect radiative forcing is −0.6±0.4Wm−2. Its standard deviation accounts for uncertainties in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by −0.1 and −2.0Wm−2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol changes are required.
Resumo:
Simulated multi-model “diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated “host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47Wm−2 and the inter-model standard deviation is 0.55Wm−2, corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04Wm−2, and the standard deviation increases to 1.01W−2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45Wm−2 (8 %) clear-sky and 0.62Wm−2 (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the Aero- Com Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11Wm−2 in the AeroCom Direct Radiative Effect experiment.
Resumo:
In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean ± one standard deviation) is ±3.5 ±0.8, ±4.0 ±1.7, and 29.5 ±18.1mWm ±2 per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 ±5% to 31 ±9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 ±9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 ±18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.