97 resultados para COVARIANCE FUNCTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A look is taken at the use of radial basis functions (RBFs), for nonlinear system identification. RBFs are firstly considered in detail themselves and are subsequently compared with a multi-layered perceptron (MLP), in terms of performance and usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.