106 resultados para ANALYTIC-FUNCTIONS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) plays a pivotal role in modulating the growth of melanocytic cells in culture. We have shown previously that a major physiological substrate of PKC, the 80 kDa myristoylated alanine-rich C-kinase substrate (MARCKS), can be phosphorylated in quiescent, non-tumorigenic melanocytes exposed transiently to a biologically active phorbol ester, but cannot be phosphorylated in phorbol ester-treated, syngeneic malignant melanoma cells. Despite its ubiquitous distribution, the function of MARCKS in cell growth and transformation remains to be demonstrated clearly. We report here that MARCKS mRNA and protein levels are down-regulated significantly in the spontaneously derived murine B16 melanoma cell line compared with syngeneic normal Mel-ab melanocytes. In contrast, the tumourigenic v-Ha-ras-transfonned melan-ocytic line, LTR Ras 2, showed a high basal level of MARCKS phosphorylation which was not enhanced by treatment of cells with phorbol ester. Furthermore, protein levels of MARCKS in LTR Ras 2 cells were similar to those expressed in Mel-ab melanocytes. However, in four out of six murine tumour cell lines investigated, levels of MARCKS protein were barely detectable. Transfection of B16 cells with a plasmid containing the MARCKS cDNA in the sense orientation produced two neomycin-resistant clones displaying reduced proliferative capacity and decreased anchorage-independent growth compared with control cells. In contrast, transfection with the antisense MARCKS construct produced many colonies which displayed enhanced growth and transforming potential compared with control cells. Thus, MARCKS appears to act as a novel growth suppressor in the spontaneous transformation of cells of melanocyte origin and may play a more general role in the tumour progression of other carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time correlation functions yield profound information about the dynamics of a physical system and hence are frequently calculated in computer simulations. For systems whose dynamics span a wide range of time, currently used methods require significant computer time and memory. In this paper, we discuss the multiple-tau correlator method for the efficient calculation of accurate time correlation functions on the fly during computer simulations. The multiple-tau correlator is efficacious in terms of computational requirements and can be tuned to the desired level of accuracy. Further, we derive estimates for the error arising from the use of the multiple-tau correlator and extend it for use in the calculation of mean-square particle displacements and dynamic structure factors. The method described here, in hardware implementation, is routinely used in light scattering experiments but has not yet found widespread use in computer simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the extent to which insecure and disorganized attachments increase risk for externalizing problems using meta-analysis. From 69 samples (N = 5,947), the association between insecurity and externalizing problems was significant, d = 0.31 (95% CI: 0.23, 0.40). Larger effects were found for boys (d = 0.35), clinical samples (d = 0.49), and from observation-based outcome assessments (d = 0.58). Larger effects were found for attachment assessments other than the Strange Situation. Overall, disorganized children appeared at elevated risk (d = 0.34, 95% CI: 0.18, 0.50), with weaker effects for avoidance (d = 0.12, 95% CI: 0.03, 0.21) and resistance (d = 0.11, 95% CI: −0.04, 0.26). The results are discussed in terms of the potential significance of attachment for mental health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive general analytic approximations for pricing European basket and rainbow options on N assets. The key idea is to express the option’s price as a sum of prices of various compound exchange options, each with different pairs of subordinate multi- or single-asset options. The underlying asset prices are assumed to follow lognormal processes, although our results can be extended to certain other price processes for the underlying. For some multi-asset options a strong condition holds, whereby each compound exchange option is equivalent to a standard single-asset option under a modified measure, and in such cases an almost exact analytic price exists. More generally, approximate analytic prices for multi-asset options are derived using a weak lognormality condition, where the approximation stems from making constant volatility assumptions on the price processes that drive the prices of the subordinate basket options. The analytic formulae for multi-asset option prices, and their Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of the delta relative to subordinate multi-asset options, and the deltas of these subordinate options with respect to the underlying assets. Simulations test the accuracy of our approximations, given some assumed values for the asset volatilities and correlations. Finally, a calibration algorithm is proposed and illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A look is taken at the use of radial basis functions (RBFs), for nonlinear system identification. RBFs are firstly considered in detail themselves and are subsequently compared with a multi-layered perceptron (MLP), in terms of performance and usage.