98 resultados para ventilatory frequency
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
We consider the scattering of a time-harmonic acoustic incident plane wave by a sound soft convex curvilinear polygon with Lipschitz boundary. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency of the incident wave. Here we propose a novel Galerkin boundary element method with a hybrid approximation space, consisting of the products of plane wave basis functions with piecewise polynomials supported on several overlapping meshes; a uniform mesh on illuminated sides, and graded meshes refined towards the corners of the polygon on illuminated and shadow sides. Numerical experiments suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy need only grow logarithmically as the frequency of the incident wave increases.
Resumo:
Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.
Resumo:
OBJECTIVE: To determine the effect of altering meal frequency on postprandial lipaemia and associated parameters. DESIGN: A randomized open cross over study to examine the programming effects of altering meal frequency. A standard test meal was given on three occasions following: (i) the normal diet; (ii) a period of two weeks on a nibbling and (iii) a period of two weeks on a gorging diet. SETTING: Free living subjects associated with the University of Surrey. SUBJECTS: Eleven female volunteers (age 22 +/- 0.89 y) were recruited. INTERVENTIONS: The subjects were requested to consume the same foods on either a nibbling diet (12 meals per day) or a gorging diet (three meals per day) for a period of two weeks. The standard test meal containing 80 g fat, 63 g carbohydrate and 20 g protein was administered on the day prior to the dietary intervention and on the day following each period of intervention. MAJOR OUTCOME MEASURES: Fasting and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, glucose-dependent insulinotropic polypeptide levels (GIP) and glucagon-like peptide (GLP-1), fasting total, low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol concentrations and postheparin lipoprotein lipase (LPL) activity measurements. Plasma paracetamol was measured following administration of a 1.5 g paracetamol load with the meal as an index of gastric emptying. RESULTS: The compliance to the two dietary regimes was high and there were no significant differences between the nutrient intakes on the two intervention diets. There were no significant differences in fasting or postprandial plasma concentrations of triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, GIP and GLP-1 levels, in response to the standard test meal following the nibbling or gorging dietary regimes. There were no significant differences in fasting total or LDL-cholesterol concentrations, or in the 15 min postheparin lipoprotein lipase activity measurements. There was a significant increase in HDL-cholesterol in the subjects following the gorging diet compared to the nibbling diet. DISCUSSION: The results suggest that previous meal frequency for a period of two weeks in young healthy women does not alter the fasting or postprandial lipid or hormonal response to a standard high fat meal. CONCLUSIONS: The findings of this study did not confirm the previous studies which suggested that nibbling is beneficial in reducing the concentrations of lipid and hormones. The rigorous control of diet content and composition in the present study compared with others, suggest reported effects of meal frequency may be due to unintentional alteration in nutrient and energy intake in previous studies.
Resumo:
Current force feedback, haptic interface devices are generally limited to the display of low frequency, high amplitude spatial data. A typical device consists of a low impedance framework of one or more degrees-of-freedom (dof), allowing a user to explore a pre-defined workspace via an end effector such as a handle, thimble, probe or stylus. The movement of the device is then constrained using high gain positional feedback, thus reducing the apparent dof of the device and conveying the illusion of hard contact to the user. Such devices are, however, limited to a narrow bandwidth of frequencies, typically below 30Hz, and are not well suited to the display of surface properties, such as object texture. This paper details a device to augment an existing force feedback haptic display with a vibrotactile display, thus providing a means of conveying low amplitude, high frequency spatial information of object surface properties. 1. Haptics and Haptic Interfaces Haptics is the study of human touch and interaction with the external environment via touch. Information from the human sense of touch can be classified in to two categories, cutaneous and kinesthetic. Cutaneous information is provided via the mechanoreceptive nerve endings in the glabrous skin of the human hand. It is primarily a means of relaying information regarding small-scale details in the form of skin stretch, compression and vibration.
Resumo:
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star-shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star-combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second-kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star-combined operator implies frequency-explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high-frequency case. The proof of coercivity of the star-combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains.
Resumo:
Many recent papers have documented periodicities in returns, return volatility, bid–ask spreads and trading volume, in both equity and foreign exchange markets. We propose and employ a new test for detecting subtle periodicities in time series data based on a signal coherence function. The technique is applied to a set of seven half-hourly exchange rate series. Overall, we find the signal coherence to be maximal at the 8-h and 12-h frequencies. Retaining only the most coherent frequencies for each series, we implement a trading rule that is based on these observed periodicities. Our results demonstrate in all cases except one that, in gross terms, the rules can generate returns that are considerably greater than those of a buy-and-hold strategy, although they cannot retain their profitability net of transactions costs. We conjecture that this methodology could constitute an important tool for financial market researchers which will enable them to detect, quantify and rank the various periodic components in financial data better.
Resumo:
Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 reanalysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.
Resumo:
We show how teacher judgements can be used to assess the quality of vocabulary used by L2 learners of French.
Resumo:
We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26N. We analyse variability on a range of timescales, from five-daily to interannual. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the time-mean is within about 10% of the observational estimate. The amplitude of the simulated annual cycle is similar to observations, but the shape of the annual cycle shows a spread among the models. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. The time-mean of the western boundary current near the latitude of the RAPID/MOCHA array has a much wider model spread than the AMOC does, indicating large differences among models in the simulation of the wind-driven gyre circulation, and its variability is unrealistically small in the models. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15--45N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the north Atlantic; consequently interannual variability of the AMOC at 50N, where it is particularly relevant to European climate, is not well-correlated with that of the AMOC at 26N, where it is monitored by the RAPID/MOCHA array.
Resumo:
Models of normal word production are well specified about the effects of frequency of linguistic stimuli on lexical access, but are less clear regarding the same effects on later stages of word production, particularly word articulation. In aphasia, this lack of specificity of down-stream frequency effects is even more noticeable because there is relatively limited amount of data on the time course of frequency effects for this population. This study begins to fill this gap by comparing the effects of variation of word frequency (lexical, whole word) and bigram frequency (sub-lexical, within word) on word production abilities in ten normal speakers and eight mild–moderate individuals with aphasia. In an immediate repetition paradigm, participants repeated single monosyllabic words in which word frequency (high or low) was crossed with bigram frequency (high or low). Indices for mapping the time course for these effects included reaction time (RT) for linguistic processing and motor preparation, and word duration (WD) for speech motor performance (word articulation time). The results indicated that individuals with aphasia had significantly longer RT and WD compared to normal speakers. RT showed a significant main effect only for word frequency (i.e., high-frequency words had shorter RT). WD showed significant main effects of word and bigram frequency; however, contrary to our expectations, high-frequency items had longer WD. Further investigation of WD revealed that independent of the influence of word and bigram frequency, vowel type (tense or lax) had the expected effect on WD. Moreover, individuals with aphasia differed from control speakers in their ability to implement tense vowel duration, even though they could produce an appropriate distinction between tense and lax vowels. The results highlight the importance of using temporal measures to identify subtle deficits in linguistic and speech motor processing in aphasia, the crucial role of phonetic characteristics of stimuli set in studying speech production and the need for the language production models to account more explicitly for word articulation.
Resumo:
Objective: To assess the number of portions of fruit and vegetables consumed daily by a large representative sample of older men, and to determine how blood antioxidant (vitamins E, A and carotenoids) concentrations vary with fruit and vegetable consumption. Design: Cross-sectional study of free-living men. Subjects: Men aged 55-69 y (dietary data, n=1957; blood data, n=1874) participating in Phase III (1989-1993) of the Caerphilly and Speedwell Collaborative Heart Disease Studies. Methods: Dietary data were obtained by semi-quantitative food-frequency questionnaire and blood samples were analysed for antioxidant vitamins. Men were subdivided into groups on the basis of portions per day of fruit and vegetables. Within these sub-groups, mean and 95% ranges of intakes and of blood antioxidant levels were obtained. Log transformations were performed where appropriate. Results: Only 4.3% of the men met the recommended target of five portions, while 33.3% of the men consumed one or fewer portions of fruit and vegetables per day. Those men who consumed the poorest diets with respect to fruit and vegetable intakes were more likely to be from lower socio-economic classes, drink more alcohol and be current smokers. Fruit and vegetable intake reflected plasma concentrations of antioxidants, which showed a dose-response relationship to frequency of consumption. Conclusions: Older men in the UK consume much less fruit and vegetables than current recommendations. Major difficulties are likely to be encountered in trying to meet a dietary target that is clearly much higher than the fruit and vegetable consumption of large sections of the older population in the UK.