38 resultados para spiral extrusion
Resumo:
Isolation of Shiga-toxin (Stx) positive Escherichia coli O157:H7 from commercially grown pigs has been reported. Furthermore, experimental infection studies have demonstrated that Stx-positive E. coli O157:H7 can persist in 12-week-old experimentally orally inoculated conventional pigs for up to 2 months and that persistence was not dependent upon intimin. We have shown that the flagellum of Stx-negative E. coli O157:H7 does not have a role to play in pathogenesis in ruminant models whereas, in poultry, the flagellum of E. coli O157:H7 was important for long-term persistent infection. The contribution of the flagellum of Stx-negative E. coli O157 in the colonisation of pigs was investigated by adherence assays on a porcine (IPI-21) cell line, porcine in vitro organ culture (IVOC) and experimental oral inoculation of conventional 14-week-old pigs. E. coli O157:H7 NCTC12900nal(r) and isogenic aflagellate and intimin deficient mutants adhered equally well to IPI-21 cells. In porcine IVOC association assays, E. coli O157:H7 NCTC12900nal(r) was associated in significantly higher numbers to tissues from the caecum and the terminal rectum than other sites. The aflagellate and intimin deficient mutants significantly adhered in greater numbers to more IVOC gastrointestinal tissues than the parent. Groups of 14-week-old pigs were dosed orally with 10(10) CFU/10 ml of either E. coli O157:H7 NCTC12900nal(r) or isogenic aflagellate and intimin deficient mutants and recovery of each test strain was similar. Histological analysis of pig tissues at post mortem examination revealed that E. coli O157 specifically stained bacteria were associated with the mucosa of the ascending and spiral colon. These data suggest that colonisation and persistence of Stx-negative E. coli O157:H7 in pigs, involves mechanisms that do not require the flagellum or intimin.
Resumo:
Using a time series of TerraSAR-X spaceborne radar images we have measured the pulsatory motion of an andesite lava flow over a 14-month period at Bagana volcano, Papua New Guinea. Between October 2010 and December 2011, lava flowed continuously down the western flank of the volcano forming a 3 km-long blocky lava flow with a channel, levees, overflows and branches. We captured four successive pulses of lava advancing down the channel system, the first such behaviour of an andesite flow to be recorded using radar. Each pulse had a volume of the order of 107 m3 emplaced over many weeks. The average extrusion rate estimated from the radar data was 0.92 ± 0.35 m3 s-1 , and varied between 0.3 and 1.8 m3 s-1, with higher rates occurring earlier in each pulse. This, together with observations of sulphur dioxide emissions, explosions and incandescence suggest a variable supply rate of magma through Bagana’s conduit as the most likely source of the pulsatory behaviour.
Peroxynitrite mediates disruption of Ca2+ homeostasis by carbon monoxide via Ca2+ ATPase degradation
Resumo:
CO stimulates formation of NO and reactive oxygen species which, via peroxynitrite formation, inhibit Ca(2+) extrusion via PMCA, leading to disruption of Ca(2+) signaling. We propose this contributes to the neurological damage associated with CO toxicity.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
Observations of volcanoes extruding andesitic lava to produce lava domes often reveal cyclic behaviour. At Soufriere Hills Volcano, Montserrat, cycles with sub-daily and multi-week periods have been recognised on many occasions. These two types of cycle have been modelled separately as stick-slip magma flow at the junction between a dyke and an overlying cylindrical conduit (Costa et al. 2012), and as the filling and discharge of magma through the elastic-walled dyke (Costa et al., 2007a) respectively. Here, we couple these two models to simulate the behaviour over a period of well-observed multi-week cycles, with accompanying sub-daily cycles, from 13 May to 21 September 1997. The coupled model captures well the asymmetrical first-order behaviour: the first 40% of the multi-week cycle consists of high rates of lava extrusion during short period/high amplitude sub-daily cycles as the dyke reservoir discharges itself. The remainder of the cycle involves increasing pressurization as more magma is stored, and extrusion rate falls, followed by a gradual increase in the period of the sub-daily cycles.
Resumo:
The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.
Resumo:
Destructive leadership behaviour often results in damage to the organisations that the individual is entrusted to lead. Although accurately pinpointing the type of destructive behaviour is difficult, this article seeks to offer suggestions as to why leaders spiral into such unattractive behaviour. After reviewing the literature, this paper highlights four drivers for destructive ways that people act based on detailed qualitative scenarios that involve how those who experienced such behaviour reacted and felt. The study reveals a noticeable human experience from which nobody can escape, and offers understanding of the study participants’ experiences. Out of respect to the participants, the authors keep their identity anonomous. We drew our subjects from a cross-section of organisations that function internationally within one area of the manufacturing industry. The article presents a model comprising two dimensions: 1) the leader’s attitude to the organisation he or she leads and 2) adequacy of his or her leadership capabilities. The models offer us understanding of the drivers of the destructive actions that the leader exhibits. Understanding allows us to provide managers with tactical methods to protect them against destructive behaviour and help them lessen the worst aspects of destructive behaviour in both their colleagues and themselves.
Resumo:
Southward Interplanetary Magnetic Field (IMF) in the Geocentric Solar Magnetospheric (GSM) reference frame is the key element that controls the level of space-weather disturbance in Earth’s magnetosphere, ionosphere and thermosphere. We discuss the relation of this geoeffective IMF component to the IMF in the Geocentric Solar Ecliptic (GSE) frame and, using the almost continuous interplanetary data for 1996-2015 (inclusive), we show that large geomagnetic storms are always associated with strong southward, out-of-ecliptic field in the GSE frame: dipole tilt effects, that cause the difference between the southward field in the GSM and GSE frames, generally make only a minor contribution to these strongest storms. The time-of-day/time-of-year response patterns of geomagnetic indices and the optimum solar wind coupling function are both influenced by the timescale of the index response. We also study the occurrence spectrum of large out-of-ecliptic field and show that for one-hour averages it is, surprisingly, almost identical in ICMEs (Interplanetary Coronal Mass Ejections), around CIRs/SIRs (Corotating and Stream Interaction Regions) and in the “quiet” solar wind (which is shown to be consistent with the effect of weak SIRs). However, differences emerge when the timescale over which the field remains southward is considered: for longer averaging timescales the spectrum is broader inside ICMEs, showing that these events generate longer intervals of strongly southward average IMF and consequently stronger geomagnetic storms. The behavior of out-of-ecliptic field with timescale is shown to be very similar to that of deviations from the predicted Parker spiral orientation, suggesting the two share common origins.