44 resultados para Wireless Sensor and Actuator Networks. Simulation. Reinforcement Learning. Routing Techniques
Resumo:
The present work presents a new method for activity extraction and reporting from video based on the aggregation of fuzzy relations. Trajectory clustering is first employed mainly to discover the points of entry and exit of mobiles appearing in the scene. In a second step, proximity relations between resulting clusters of detected mobiles and contextual elements from the scene are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows building the structure of the scene and characterises the ongoing different activities of the scene. Discovered activity zones can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix. Taking advantage of the soft relation properties, activity zones and related activities can be labeled in a more human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.
Resumo:
This paper will present a conceptual framework for the examination of land redevelopment based on a complex systems/networks approach. As Alvin Toffler insightfully noted, modern scientific enquiry has become exceptionally good at splitting problems into pieces but has forgotten how to put the pieces back together. Twenty-five years after his remarks, governments and corporations faced with the requirements of sustainability are struggling to promote an ‘integrated’ or ‘holistic’ approach to tackling problems. Despite the talk, both practice and research provide few platforms that allow for ‘joined up’ thinking and action. With socio-economic phenomena, such as land redevelopment, promising prospects open up when we assume that their constituents can make up complex systems whose emergent properties are more than the sum of the parts and whose behaviour is inherently difficult to predict. A review of previous research shows that it has mainly focused on idealised, ‘mechanical’ views of property development processes that fail to recognise in full the relationships between actors, the structures created and their emergent qualities. When reality failed to live up to the expectations of these theoretical constructs then somebody had to be blamed for it: planners, developers, politicians. However, from a ‘synthetic’ point of view the agents and networks involved in property development can be seen as constituents of structures that perform complex processes. These structures interact, forming new more complex structures and networks. Redevelopment then can be conceptualised as a process of transformation: a complex system, a ‘dissipative’ structure involving developers, planners, landowners, state agencies etc., unlocks the potential of previously used sites, transforms space towards a higher order of complexity and ‘consumes’ but also ‘creates’ different forms of capital in the process. Analysis of network relations point toward the ‘dualism’ of structure and agency in these processes of system transformation and change. Insights from actor network theory can be conjoined with notions of complexity and chaos to build an understanding of the ways in which actors actively seek to shape these structures and systems, whilst at the same time are recursively shaped by them in their strategies and actions. This approach transcends the blame game and allows for inter-disciplinary inputs to be placed within a broader explanatory framework that does away with many past dichotomies. Better understanding of the interactions between actors and the emergent qualities of the networks they form can improve our comprehension of the complex socio-spatial phenomena that redevelopment comprises. The insights that this framework provides when applied in UK institutional investment into redevelopment are considered to be significant.
Resumo:
The themes of awareness and influence within the innovation diffusion process are addressed. The innovation diffusion process is typically represented as stages, yet awareness and influence are somewhat under-represented in the literature. Awareness and influence are situated within the contextual setting of individual actors but also within the broader institutional forces. Understanding how actors become aware of an innovation and then how their opinion is influenced is important for creating a more innovation-active UK construction sector. Social network analysis is proposed as one technique for mapping how awareness and influence occur and what they look like as a network. Empirical data are gathered using two modes of enquiry. This is done through a pilot study consisting of chartered professionals and then through a case study organization as it attempted to diffuse an innovation. The analysis demonstrates significant variations across actors’ awareness and influence networks. It is argued that social network analysis can complement other research methods in order to present a richer picture of how actors become aware of innovations and where they draw their influences regarding adopting innovations. In summarizing the findings, a framework for understanding awareness and influence associated with innovation within the UK construction sector is presented. Finally, with the UK construction sector continually being encouraged to be innovative, understanding and managing an actor’s awareness and influence network will be beneficial. The overarching conclusion thus describes the need not only to build research capacity in this area but also to push the boundaries related to the research methods employed.
Resumo:
Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.
Resumo:
This study compared orthographic and semantic aspects of word learning in children who differed in reading comprehension skill. Poor comprehenders and controls matched for age (9-10 years), nonverbal ability and decoding skill were trained to pronounce 20 visually presented nonwords, 10 in a consistent way and 10 in an inconsistent way. They then had an opportunity to infer the meanings of the new words from story context. Orthographic learning was measured in three ways: the number of trials taken to learn to pronounce nonwords correctly, orthographic choice and spelling. Across all measures, consistent items were easier than inconsistent items and poor comprehenders did not differ from control children. Semantic learning was assessed on three occasions, using a nonword-picture matching task. While poor comprehenders showed equivalent semantic learning to controls immediately after exposure to nonword meaning, this knowledge was not well retained over time. Results are discussed in terms of the language and reading skills of poor comprehenders and in relation to current models of reading development.
Resumo:
Business and IT alignment has continued as a top concern for business and IT executives for almost three decades. Many researchers have conducted empirical studies on the relationship between business-IT alignment and performance. Yet, these approaches, lacking a social perspective, have had little impact on sustaining performance and competitive advantage. In addition to the limited alignment literature that explores organisational learning that is represented in shared understanding, communication, cognitive maps and experiences. Hence, this paper proposes an integrated process that enables social and intellectual dimensions through the concept of organisational learning. In particular, the feedback and feed- forward process which provide a value creation across dynamic multilevel of learning. This mechanism enables on-going effectiveness through development of individuals, groups and organisations, which improves the quality of business and IT strategies and drives to performance.
Resumo:
Business and IT alignment is increasingly acknowledged as a key for organisational performance. However, alignment research lack to mechanisms that enable for on-going process with multi-level effects. Multi-level learning allows on-going effectiveness through development of the organisation and improved quality of business and IT strategies. In particular, exploration and exploitation enable effective process of alignment across dynamic multi-level of learning. Hence, this paper proposes a conceptual framework that links multi-level learning and business-IT strategy through the concept of exploration and exploitation, which considers short-term and long-term alignment together to address the challenges of strategic alignment faced in sustaining organisational performance.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.
Resumo:
Online learning management systems are in use to facilitate the face to face learning process in many universities. There are many variables that shape and influence a student’s perception of an online learning management system. This study investigates whether there is a relationship between the perception of a student regarding the learning management system and their actual usage of such system. It is believed to help better understand the student usage of online learning management system. An online questionnaire was published on a course management system for a selected subject and the student participation was voluntary. Results indicate that no significant relationship between the perception students had about the learning management system and the actual use of the system. Interestingly, a significant relationship was found between having internet access away from university and the student perception about the system. Students who had internet access away from university had better perception about the learning management system even though there was no significant difference in the level of online learning management system usage between the groups.
Resumo:
It is often necessary to selectively attend to important information, at the expense of less important information, especially if you know you cannot remember large amounts of information. The present study examined how younger and older adults select valuable information to study, when given unrestricted choices about how to allocate study time. Participants were shown a display of point values ranging from 1–30. Participants could choose which values to study, and the associated word was then shown. Study time, and the choice to restudy words, was under the participant's control during the 2-minute study session. Overall, both age groups selected high value words to study and studied these more than the lower value words. However, older adults allocated a disproportionately greater amount of study time to the higher-value words, and age-differences in recall were reduced or eliminated for the highest value words. In addition, older adults capitalized on recency effects in a strategic manner, by studying high-value items often but also immediately before the test. A multilevel mediation analysis indicated that participants strategically remembered items with higher point value, and older adults showed similar or even stronger strategic process that may help to compensate for poorer memory. These results demonstrate efficient (and different) metacognitive control operations in younger and older adults, which can allow for strategic regulation of study choices and allocation of study time when remembering important information. The findings are interpreted in terms of life span models of agenda-based regulation and discussed in terms of practical applications. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators. This article is protected by copyright. All rights reserved.