47 resultados para Visual pattern recognition
Resumo:
The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices has been well documented. They have a significant advantages over more common networks paradigms, such as the multilayer perceptron in that they can be easily implemented in digital hardware using standard random access memories. To date, n-tuple networks have predominantly been used as fast pattern classification devices. The paper describes how n-tuple techniques can be used in the hardware implementation of a general auto-associative network.
Resumo:
This paper addresses the problem of tracking line segments corresponding to on-line handwritten obtained through a digitizer tablet. The approach is based on Kalman filtering to model linear portions of on-line handwritten, particularly, handwritten numerals, and to detect abrupt changes in handwritten direction underlying a model change. This approach uses a Kalman filter framework constrained by a normalized line equation, where quadratic terms are linearized through a first-order Taylor expansion. The modeling is then carried out under the assumption that the state is deterministic and time-invariant, while the detection relies on double thresholding mechanism which tests for a violation of this assumption. The first threshold is based on an approach of layout kinetics. The second one takes into account the jump in angle between the past observed direction of layout and its current direction. The method proposed enables real-time processing. To illustrate the methodology proposed, some results obtained from handwritten numerals are presented.
Resumo:
An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
We address the problem of automatically identifying and restoring damaged and contaminated images. We suggest a novel approach based on a semi-parametric model. This has two components, a parametric component describing known physical characteristics and a more flexible non-parametric component. The latter avoids the need for a detailed model for the sensor, which is often costly to produce and lacking in robustness. We assess our approach using an analysis of electroencephalographic images contaminated by eye-blink artefacts and highly damaged photographs contaminated by non-uniform lighting. These experiments show that our approach provides an effective solution to problems of this type.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Resumo:
Scope: Fibers and prebiotics represent a useful dietary approach for modulating the human gut microbiome. Therefore, aim of the present study was to investigate the impact of four flours (wholegrain rye, wholegrain wheat, chickpeas and lentils 50:50, and barley milled grains), characterized by a naturally high content in dietary fibers, on the intestinal microbiota composition and metabolomic output. Methods and results: A validated three-stage continuous fermentative system simulating the human colon was used to resemble the complexity and diversity of the intestinal microbiota. Fluorescence in situ hybridization was used to evaluate the impact of the flours on the composition of the microbiota, while small-molecule metabolome was assessed by NMR analysis followed by multivariate pattern recognition techniques. HT29 cell-growth curve assay was used to evaluate the modulatory properties of the bacterial metabolites on the growth of intestinal epithelial cells. All the four flours showed positive modulations of the microbiota composition and metabolic activity. Furthermore, none of the flours influenced the growth-modulatory potential of the metabolites toward HT29 cells. Conclusion: Our findings support the utilization of the tested ingredients in the development of a variety of potentially prebiotic food products aimed at improving gastrointestinal health.
Resumo:
Background: Few studies have investigated how individuals diagnosed with post-stroke Broca’s aphasia decompose words into their constituent morphemes in real-time processing. Previous research has focused on morphologically complex words in non-time-constrained settings or in syntactic frames, but not in the lexicon. Aims: We examined real-time processing of morphologically complex words in a group of five Greek-speaking individuals with Broca’s aphasia to determine: (1) whether their morphological decomposition mechanisms are sensitive to lexical (orthography and frequency) vs. morphological (stem-suffix combinatory features) factors during visual word recognition, (2) whether these mechanisms are different in inflected vs. derived forms during lexical access, and (3) whether there is a preferred unit of lexical access (syllables vs. morphemes) for inflected vs. derived forms. Methods & Procedures: The study included two real-time experiments. The first was a semantic judgment task necessitating participants’ categorical judgments for high- and low-frequency inflected real words and pseudohomophones of the real words created by either an orthographic error at the stem or a homophonous (but incorrect) inflectional suffix. The second experiment was a letter-priming task at the syllabic or morphemic boundary of morphologically transparent inflected and derived words whose stems and suffixes were matched for length, lemma and surface frequency. Outcomes & Results: The majority of the individuals with Broca’s aphasia were sensitive to lexical frequency and stem orthography, while ignoring the morphological combinatory information encoded in the inflectional suffix that control participants were sensitive to. The letter-priming task, on the other hand, showed that individuals with aphasia—in contrast to controls—showed preferences with regard to the unit of lexical access, i.e., they were overall faster on syllabically than morphemically parsed words and their morphological decomposition mechanisms for inflected and derived forms were modulated by the unit of lexical access. Conclusions: Our results show that in morphological processing, Greek-speaking persons with aphasia rely mainly on stem access and thus are only sensitive to orthographic violations of the stem morphemes, but not to illegal morphological combinations of stems and suffixes. This possibly indicates an intact orthographic lexicon but deficient morphological decomposition mechanisms, possibly stemming from an underspecification of inflectional suffixes in the participants’ grammar. Syllabic information, however, appears to facilitate lexical access and elicits repair mechanisms that compensate for deviant morphological parsing procedures.
Resumo:
This paper presents the PETS2009 outdoor crowd image analysis surveillance dataset and the performance evaluation of people counting, detection and tracking results using the dataset submitted to five IEEE Performance Evaluation of Tracking and Surveillance (PETS) workshops. The evaluation was carried out using well established metrics developed in the Video Analysis and Content Extraction (VACE) programme and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The comparative evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness and provides a brief analysis of the metrics themselves to provide further insights into the performance of the authors’ systems.
Resumo:
The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.
Resumo:
Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.