44 resultados para Time-memory attacks
Resumo:
Recent research into sea ice friction has focussed on ways to provide a model which maintains much of the clarity and simplicity of Amonton's law, yet also accounts for memory effects. One promising avenue of research has been to adapt the rate- and state- dependent models which are prevalent in rock friction. In such models it is assumed that there is some fixed critical slip displacement, which is effectively a measure of the displacement over which memory effects might be considered important. Here we show experimentally that a fixed critical slip displacement is not a valid assumption in ice friction, whereas a constant critical slip time appears to hold across a range of parameters and scales. As a simple rule of thumb, memory effects persist to a significant level for 10 s. We then discuss the implications of this finding for modelling sea ice friction and for our understanding of friction in general.
Resumo:
Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember–know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
Emerging evidence suggests that items held in working memory(WM)might not all be in the same representational state. One item might be privileged over others, making it more accessible and thereby recalled with greater precision. Here, using transcranial magnetic stimulation (TMS), we provide causal evidence in human participants that items inWMare differentially susceptible to disruptive TMS, depending on their state, determined either by task relevance or serial position. Across two experiments, we applied TMS to area MT during the WM retention of two motion directions. In Experiment 1, we used an “incidental cue” to bring one of the two targets into a privileged state. In Experiment 2, we presented the targets sequentially so that the last item was in a privileged state by virtue of recency. In both experiments, recall precision of motion direction was differentially affected by TMS, depending on the state of the memory target at the time of disruption. Privileged items were recalled with less precision, whereas nonprivileged items were recalled with higher precision. Thus, only the privileged item was susceptible to disruptive TMS over MT�. By contrast, precision of the nonprivileged item improved either directly because of facilitation by TMS or indirectly through reduced interference from the privileged item. Our results provide a unique line of evidence, as revealed by TMS over a posterior sensory brain region, for at least two different states of item representation in WM.
Resumo:
Decades of research attest that memory processes suffer under conditions of auditory distraction. What is however less well understood is whether people are able to modify how their memory processes are deployed in order to compensate for disruptive effects of distraction. The metacognitive approach to memory describes a variety of ways people can exert control over their cognitive processes to optimize performance. Here we describe our recent investigations into how these control processes change under conditions of auditory distraction. We specifically looked at control of encoding in the form of decisions about how long to study a word when it is presented and control of memory reporting in the form of decisions whether to volunteer or withhold retrieved details. Regarding control of encoding, we expected that people would compensate for disruptive effects of distraction by extending study time under noise. Our results revealed, however, that when exposed to irrelevant speech, people curtail rather than extend study. Regarding control of memory reporting, we expected that people would compensate for the loss of access to memory records by volunteering responses held with lower confidence. Our results revealed, however, that people’s reporting strategies do not differ when memory task is performed in silence or under auditory distraction, although distraction seriously undermines people’s confidence in their own responses. Together, our studies reveal novel avenues for investigating the psychological effects of auditory distraction within a metacognitive framework.
Resumo:
What is the relationship between magnitude judgments relying on directly available characteristics versus probabilistic cues? Question frame was manipulated in a comparative judgment task previously assumed to involve inference across a probabilistic mental model (e.g., “which city is largest” – the “larger” question – versus “which city is smallest” – the “smaller” question). Participants identified either the largest or smallest city (Experiments 1a, 2) or the richest or poorest person (Experiment 1b) in a three-alternative forced choice (3-AFC) task (Experiment 1) or 2-AFC task (Experiment 2). Response times revealed an interaction between question frame and the number of options recognized. When asked the smaller question, response times were shorter when none of the options were recognized. The opposite pattern was found when asked the larger question: response time was shorter when all options were recognized. These task-stimuli congruity results in judgment under uncertainty are consistent with, and predicted by, theories of magnitude comparison which make use of deductive inferences from declarative knowledge.
Resumo:
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.
Resumo:
Recent evidence from animal and adult human subjects has demonstrated potential benefits to cognition from flavonoid supplementation. This study aimed to investigate whether these cognitive benefits extended to a sample of school-aged children. Using a cross-over design, with a wash out of at least seven days between drinks, fourteen 8-10 year old children consumed either a flavonoid-rich blueberry drink or matched vehicle. Two hours after consumption, subjects completed a battery of five cognitive tests comprising the Go-NoGo, Stroop, Rey’s Auditory Verbal Learning Task, Object Location Task, and a Visual N-back. In comparison to vehicle, the blueberry drink produced significant improvements in the delayed recall of a previously learned list of words, showing for the first time a cognitive benefit for acute flavonoid intervention in children. However, performance on a measure of proactive interference indicated that the blueberry intervention led to a greater negative impact of previously memorised words on the encoding of a set of new words. There was no benefit of our blueberry intervention for measures of attention, response inhibition or visuo-spatial memory. While findings are mixed, the improvements in delayed recall found in this pilot study suggest that, following acute flavonoid-rich blueberry interventions, school aged children encode memory items more effectively.
Resumo:
The treatment of auditory-verbal short-term memory (STM) deficits in aphasia is a growing avenue of research (Martin & Reilly, 2012; Murray, 2012). STM treatment requires time precision, which is suited to computerised delivery. We have designed software, which provides STM treatment for aphasia. The treatment is based on matching listening span tasks (Howard & Franklin, 1990), aiming to improve the temporal maintenance of multi-word sequences (Salis, 2012). The person listens to pairs of word-lists that differ in word-order and decides if the pairs are the same or different. This approach does not require speech output and is suitable for persons with aphasia who have limited or no output. We describe the software and how its review from clinicians shaped its design.
Resumo:
Findings from animal studies suggest that components of fruit and vegetables (F&V) may protect against, and even reverse, age-related decline(1,2) in aspects of cognitive functioning such as spatial working memory (SWM). Human subjects in vivo and in vitro studies indicate that anti-inflammatory, anti-oxidant and cell-signalling properties of flavonoids and carotenoids, non-nutrient components of F&V, may underpin this protective effect(3–5). The Flavonoid University of Reading Study (FLAVURS), designed to explore the dose-response relationship between dietary F&V flavonoids and CVD, enabled the investigation of such an association with SWM. FLAVURS is an 18-week parallel three-arm randomised controlled dietary intervention trial with four time points, measured at 6-weekly intervals from baseline. Low F&V consumers at risk of CVD aged 26–70 years were randomly assigned to high flavonoid (HF), low flavonoid (LF) or control group. F&V intake increased by two daily 80 g portions every 6 weeks, with either HF or LF F&V, in addition to each participant's habitual diet, while controls maintained their habitual diet. At each visit, participants completed a cognitive test battery with SWM as the primary outcome. The HF group showed significantly higher levels of urinary flavonoids than LF or controls at 12 weeks (P<0.001) as expected, but surprisingly only higher levels than LF at 18 weeks (P<0.01). The LF group showed higher levels of plasma carotenoids than the other groups at 18 weeks (P<0.001). No group differences were found for SWM overall, however, age-group sub-analyses (26–50 and 51–70 years of age) showed differences from 0 to 18 weeks for younger adults, with LF improving significantly more than the other two groups on SWM (P<0.05). As nutritional absorption is known to decrease with age, separate stepwise regressions were performed on the two age groups irrespective of dietary group, with urinary flavonoids and plasma carotenoids as predictors. For younger adults, improved SWM performance from 0 to 18 weeks was associated with higher carotenoid levels, β=0.28, t(55)=2.10, P<0.05, accounting for 7.5% of the variance, R2=0.075, F(1,54)=4.41, P=0.040. For older adults, no between-group SWM differences were found. Findings suggest that F&V-based flavonoids and carotenoids may provide benefits for cognitive function, and that carotenoids in particular may improve cognitive performance in SWM. Given that these benefits were restricted to younger adults, future work is needed to test the reliability of this finding, as well as determine the mechanisms by which age-dependent differences in F&V responsiveness occur.
Resumo:
A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli process, where the probability of an event occurring at time t is given by a fixed probability x, is modified to include a memory effect where the event probability is increased proportionally to the number of events that occurred within a given amount of time preceding t. For small values of x the interevent time distribution follows a power law with exponent −2−x. We consider a dynamic network where each node forms, and breaks connections according to this process. The value of x for each node depends on the fitness distribution, \rho(x), from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data, such as online social communications and fMRI scans.
Resumo:
We investigated the time course of anaphor resolution in children and whether this is modulated by individual differences in working memory and reading skill. The eye movements of 30 children (10-11 years) were monitored as they read short paragraphs in which (i) the semantic typicality of an antecedent and (ii) its distance in relation to an anaphor, were orthogonally manipulated. Children showed effects of distance and typicality on the anaphor itself, and also on the word to the right of the anaphor, suggesting that anaphoric processing begins immediately but continues after the eyes have left the anaphor. Furthermore, children showed no evidence of resolving anaphors in the most difficult condition (distant atypical antecedent), suggesting that anaphoric processing that is demanding may not occur online in children of this age. Finally, working memory capacity and reading comprehension skill affect the magnitude and time course of typicality and distance effects during anaphoric processing.
Resumo:
At the Paris Peace Conferences of 1918-1919, new states aspiring to be nation-states were created for 60 million people, but at the same time 25 million people found themselves as ethnic minorities. This change of the old order in Europe had a considerable impact on one such group, more than 3 million Bohemian German-speakers, later referred to as Sudeten Germans. After the demise of the Habsburg Empire In 1918, they became part of the new state of Czechoslovakia. In 1938, the Munich Agreement – prelude to the Second World War – integrated them into Hitler’s Reich; in 1945-1946 they were expelled from the reconstituted state of Czechoslovakia. At the centre of this War Child case study are German children from the Northern Bohemian town and district, formerly known as Gablonz an der Neisse, famous for exquisite glass art, now Jablonec nad Nisou in the Czech Republic. After their expulsion they found new homes in the post-war Federal Republic of Germany. In addition, testimonies have been drawn upon of some Czech eyewitnesses from the same area, who provided their perspective from the other side, as it were. It turned out to be an insightful case study of the fate of these communities, previously studied mainly within the context of the national struggle between Germans and Czechs. The inter-disciplinary research methodology adopted here combines history and sociological research to demonstrate the effect of larger political and social developments on human lives, not shying away from addressing sensitive political and historical issues, as far as these are relevant within the context of the study. The expellees started new lives in what became Neugablonz in post-war Bavaria where they successfully re-established the industries they had had to leave behind in 1945-1946. Part 1 of the study sheds light on the complex Czech-German relationship of this important Central European region, addressing issues of democracy, ethnicity, race, nationalism, geopolitics, economics, human geography and ethnography. It also charts the developments leading to the expulsion of the Sudeten Germans from Czechoslovakia after 1945. What is important in this War Child study is how the expellees remember their history while living as children in Sudetenland and later. The testimony data gained indicate that certain stereotypes often repeated within the context of Sudeten issues such as the confrontational nature of inter-ethnic relations are not reflected in the testimonies of the respondents from Gablonz. In Part 2 the War Child Study explores the memories of the former Sudeten war children using sociological research methods. It focuses on how they remember life in their Bohemian homeland and coped with the life-long effects of displacement after their expulsion. The study maps how they turned adversity into success by showing a remarkable degree of resilience and ingenuity in the face of testing circumstances due to the abrupt break in their lives. The thesis examines the reasons for the relatively positive outcome to respondents’ lives and what transferable lessons can be deduced from the results of this study.
Resumo:
The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h
Resumo:
The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ; 4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60 8 S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.