47 resultados para Systems Theory Framework
Resumo:
Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.
Resumo:
This paper identifies the major challenges in the area of pattern formation. The work is also motivated by the need for development of a single framework to surmount these challenges. A framework based on the control of macroscopic parameters is proposed. The issue of transformation of patterns is specifically considered. A definition for transformation and four special cases, namely elementary and geometrical transformations by repositioning all or some robots in the pattern are provided. Two feasible tools for pattern transformation namely, a macroscopic parameter method and a mathematical tool - Moebius transformation also known as the linear fractional transformation are introduced. The realization of the unifying framework considering planning and communication is reported.
Resumo:
This paper will present a conceptual framework for the examination of land redevelopment based on a complex systems/networks approach. As Alvin Toffler insightfully noted, modern scientific enquiry has become exceptionally good at splitting problems into pieces but has forgotten how to put the pieces back together. Twenty-five years after his remarks, governments and corporations faced with the requirements of sustainability are struggling to promote an ‘integrated’ or ‘holistic’ approach to tackling problems. Despite the talk, both practice and research provide few platforms that allow for ‘joined up’ thinking and action. With socio-economic phenomena, such as land redevelopment, promising prospects open up when we assume that their constituents can make up complex systems whose emergent properties are more than the sum of the parts and whose behaviour is inherently difficult to predict. A review of previous research shows that it has mainly focused on idealised, ‘mechanical’ views of property development processes that fail to recognise in full the relationships between actors, the structures created and their emergent qualities. When reality failed to live up to the expectations of these theoretical constructs then somebody had to be blamed for it: planners, developers, politicians. However, from a ‘synthetic’ point of view the agents and networks involved in property development can be seen as constituents of structures that perform complex processes. These structures interact, forming new more complex structures and networks. Redevelopment then can be conceptualised as a process of transformation: a complex system, a ‘dissipative’ structure involving developers, planners, landowners, state agencies etc., unlocks the potential of previously used sites, transforms space towards a higher order of complexity and ‘consumes’ but also ‘creates’ different forms of capital in the process. Analysis of network relations point toward the ‘dualism’ of structure and agency in these processes of system transformation and change. Insights from actor network theory can be conjoined with notions of complexity and chaos to build an understanding of the ways in which actors actively seek to shape these structures and systems, whilst at the same time are recursively shaped by them in their strategies and actions. This approach transcends the blame game and allows for inter-disciplinary inputs to be placed within a broader explanatory framework that does away with many past dichotomies. Better understanding of the interactions between actors and the emergent qualities of the networks they form can improve our comprehension of the complex socio-spatial phenomena that redevelopment comprises. The insights that this framework provides when applied in UK institutional investment into redevelopment are considered to be significant.
Resumo:
An effective approach to research on farmers' behaviour is based on: i) an explicit and well-motivated behavioural theory; ii) an integrative approach; and iii) understanding feedback processes and dynamics. While current approaches may effectively tackle some of them, they often fail to combine them together. The paper presents the integrative agent-centred (IAC) framework, which aims at filling this gap. It functions in accordance with these three pillars and provides a conceptual structure to understand farmers' behaviour in agricultural systems. The IAC framework is agent-centred and supports the understanding of farmers' behavior consistently with the perspective of agricultural systems as complex social-ecological systems. It combines different behavioural drivers, bridges between micro and macro levels, and depicts a potentially varied model of human agency. The use of the framework in practice is illustrated through two studies on pesticide use among smallholders in Colombia. The examples show how the framework can be implemented to derive policy implications to foster a transition towards more sustainable agricultural practices. The paper finally suggests that the framework can support different research designs for the study of agents' behaviour in agricultural and social-ecological systems.
Resumo:
Integrated Arable Farming Systems are examined from the perspective of the farmer considering the use of such techniques, and data are presented which suggest that the uptake of the approach may expose the manager to a greater degree of risk. Observations are made about the possible uptake of such systems in the UK and the implications this may have for agricultural and environmental policy in general.
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.
Resumo:
This paper offers an integrated analysis of out-sourcing, off-shoring and foreign direct investment within a systems view of international business. This view takes the supply chain rather than the firm as the basic unit of analysis. It argues that competition in the global economy selects supply chains that maximise the joint profit of all the firms in the chain. The systems view is compared with the firm-centred view commonly used in strategy literature. The paper shows that a firm’s strategy must be embedded within an efficient supply chain strategy, and that this strategy must be negotiated with, rather than imposed upon, other firms. The paper analyses the conditions under which various supply chain strategies - and by implication various firm-level strategies - are efficient. Only by adopting a systems view of supply chains is it possible to determine which firm-level strategies will succeed in a volatile global economy.
Resumo:
The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.
Resumo:
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
During the last 30 years, significant debate has taken place regarding multilevel research. However, the extent to which multilevel research is overtly practiced remains to be examined. This article analyzes 10 years of organizational research within a multilevel framework (from 2001 to 2011). The goals of this article are (a) to understand what has been done, during this decade, in the field of organizational multilevel research and (b) to suggest new arenas of research for the next decade. A total of 132 articles were selected for analysis through ISI Web of Knowledge. Through a broad-based literature review, results suggest that there is equilibrium between the amount of empirical and conceptual papers regarding multilevel research, with most studies addressing the cross-level dynamics between teams and individuals. In addition, this study also found that the time still has little presence in organizational multilevel research. Implications, limitations, and future directions are addressed in the end. Organizations are made of interacting layers. That is, between layers (such as divisions, departments, teams, and individuals) there is often some degree of interdependence that leads to bottom-up and top-down influence mechanisms. Teams and organizations are contexts for the development of individual cognitions, attitudes, and behaviors (top-down effects; Kozlowski & Klein, 2000). Conversely, individual cognitions, attitudes, and behaviors can also influence the functioning and outcomes of teams and organizations (bottom-up effects; Arrow, McGrath, & Berdahl, 2000). One example is when the rewards system of one organization may influence employees’ intention to quit and the existence or absence of extra role behaviors. At the same time, many studies have showed the importance of bottom-up emergent processes that yield higher level phenomena (Bashshur, Hernández, & González-Romá, 2011; Katz-Navon & Erez, 2005; Marques-Quinteiro, Curral, Passos, & Lewis, in press). For example, the affectivity of individual employees may influence their team’s interactions and outcomes (Costa, Passos, & Bakker, 2012). Several authors agree that organizations must be understood as multilevel systems, meaning that adopting a multilevel perspective is fundamental to understand real-world phenomena (Kozlowski & Klein, 2000). However, whether this agreement is reflected in practicing multilevel research seems to be less clear. In fact, how much is known about the quantity and quality of multilevel research done in the last decade? The aim of this study is to compare what has been proposed theoretically, concerning the importance of multilevel research, with what has really been empirically studied and published. First, this article outlines a review of the multilevel theory, followed by what has been theoretically “put forward” by researchers. Second, this article presents what has really been “practiced” based on the results of a review of multilevel studies published from 2001 to 2011 in business and management journals. Finally, some barriers and challenges to true multilevel research are suggested. This study contributes to multilevel research as it describes the last 10 years of research. It quantitatively depicts the type of articles being written, and where we can find the majority of the publications on empirical and conceptual work related to multilevel thinking.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.