80 resultados para Parallel and distributed systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To describe some research done, as part of an EPSRC funded project, to assist engineers working together on collaborative tasks. Design/methodology/approach – Distributed finite state modelling and agent techniques are used successfully in a new hybrid self-organising decision making system applied to collaborative work support. For the particular application, analysis of the tasks involved has been performed and these tasks are modelled. The system then employs a novel generic agent model, where task and domain knowledge are isolated from the support system, which provides relevant information to the engineers. Findings – The method is applied in the despatch of transmission commands within the control room of The National Grid Company Plc (NGC) – tasks are completed significantly faster when the system is utilised. Research limitations/implications – The paper describes a generic approach and it would be interesting to investigate how well it works in other applications. Practical implications – Although only one application has been studied, the methodology could equally be applied to a general class of cooperative work environments. Originality/value – One key part of the work is the novel generic agent model that enables the task and domain knowledge, which are application specific, to be isolated from the support system, and hence allows the method to be applied in other domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully connected cubic networks (FCCNs) are a class of newly proposed hierarchical interconnection networks for multicomputer systems, which enjoy the strengths of constant node degree and good expandability. The shortest path routing in FCCNs is an open problem. In this paper, we present an oblivious routing algorithm for n-level FCCN with N = 8(n) nodes, and prove that this algorithm creates a shortest path from the source to the destination. At the costs of both an O(N)-parallel-step off-line preprocessing phase and a list of size N stored at each node, the proposed algorithm is carried out at each related node in O(n) time. In some cases the proposed algorithm is superior to the one proposed by Chang and Wang in terms of the length of the routing path. This justifies the utility of our routing strategy. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective is to develop methods that automatically generate kinematic models for the movements of biological and robotic systems. Two methods for the identification of the kinematics are presented. The first method requires the elimination of the displacement variables that cannot be measured while the second method attempts to estimate the changes in these variables. The methods were tested using a planar two-revolute-joint linkage. Results show that the model parameters obtained agree with the actual parameters to within 5%. Moreover, the methods were applied to model head and neck movements in the sagittal plane. The results indicate that these movements are well modeled by a two-revolute-joint system. A spatial three-revolute-joint model was also discussed and tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Occupants’ behaviour when improving the indoor environment plays a significant role in saving energy in buildings. Therefore the key step to reducing energy consumption and carbon emissions from buildings is to understand how occupants interact with the environment they are exposed to in terms of achieving thermal comfort and well-being; though such interaction is complex. This paper presents a dynamic process of occupant behaviours involving technological, personal and psychological adaptations in response to varied thermal conditions based on the data covering four seasons gathered from the field study in Chongqing, China. It demonstrates that occupants are active players in environmental control and their adaptive responses are driven strongly by ambient thermal stimuli and vary from season to season and from time to time, even on the same day. Positive, dynamic, behavioural adaptation will help save energy used in heating and cooling buildings. However, when environmental parameters cannot fully satisfy occupants’ requirements, negative behaviours could conflict with energy saving. The survey revealed that about 23% of windows are partly open for fresh air when air-conditioners are in operation in summer. This paper addresses the issues how the building and environmental systems should be designed, operated and managed in a way that meets the requirements of energy efficiency without compromising wellbeing and productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concepts of on-line transactional processing (OLTP) and on-line analytical processing (OLAP) are often confused with the technologies or models that are used to design transactional and analytics based information systems. This in some way has contributed to existence of gaps between the semantics in information captured during transactional processing and information stored for analytical use. In this paper, we propose the use of a unified semantics design model, as a solution to help bridge the semantic gaps between data captured by OLTP systems and the information provided by OLAP systems. The central focus of this design approach is on enabling business intelligence using not just data, but data with context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid multiprocessor architectures which combine re-configurable computing and multiprocessors on a chip are being proposed to transcend the performance of standard multi-core parallel systems. Both fine-grained and coarse-grained parallel algorithm implementations are feasible in such hybrid frameworks. A compositional strategy for designing fine-grained multi-phase regular processor arrays to target hybrid architectures is presented in this paper. The method is based on deriving component designs using classical regular array techniques and composing the components into a unified global design. Effective designs with phase-changes and data routing at run-time are characteristics of these designs. In order to describe the data transfer between phases, the concept of communication domain is introduced so that the producer–consumer relationship arising from multi-phase computation can be treated in a unified way as a data routing phase. This technique is applied to derive new designs of multi-phase regular arrays with different dataflow between phases of computation.