220 resultados para Numerical example
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
The goal of this work is the numerical realization of the probe method suggested by Ikehata for the detection of an obstacle D in inverse scattering. The main idea of the method is to use probes in the form of point source (., z) with source point z to define an indicator function (I) over cap (z) which can be reconstructed from Cauchy data or far. eld data. The indicator function boolean AND (I) over cap (z) can be shown to blow off when the source point z tends to the boundary aD, and this behavior can be used to find D. To study the feasibility of the probe method we will use two equivalent formulations of the indicator function. We will carry out the numerical realization of the functional and show reconstructions of a sound-soft obstacle.
Resumo:
We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.
Resumo:
The SCoTLASS problem-principal component analysis modified so that the components satisfy the Least Absolute Shrinkage and Selection Operator (LASSO) constraint-is reformulated as a dynamical system on the unit sphere. The LASSO inequality constraint is tackled by exterior penalty function. A globally convergent algorithm is developed based on the projected gradient approach. The algorithm is illustrated numerically and discussed on a well-known data set. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.