35 resultados para Multiple-use forestry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating top fruit production into an agroforestry system, where trees are integrated with arable crop production may have a beneficial effect on the control of plant pathogens such as scab (Venturia inaequalis). Apple yields and pest and disease levels were assessed in a novel apple/arable agroforestry system in Suffolk, and compared with a modern local organic orchard in 2012. Despite 2012 being a very bad year for apple production in the UK, apple yields in the agroforestry system appeared to be comparable with standard figures when scaled up from 2.5% land area under apple production to 100% apples, and even at just 2.5% cover, outperformed the organic orchard used for comparison. Initial indications are that scab levels were over twice as high in the organic orchard than in the agroforestry, indicating that this approach may offer some potential in reducing copper use in organic apple production. However, further research will be required to confirm these early results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a new application of key psychological concepts in the area of Sociometry for the selection of workers within organizations in which projects are developed. The project manager can use a new procedure to determine which individuals should be chosen from a given pool of resources and how to combine them into one or several simultaneous groups/projects in order to assure the highest possible overall work efficiency from the standpoint of social interaction. The optimization process was carried out by means of matrix calculations performed using a computer or even manually, and based on a number of new ratios generated ad-hoc and composed on the basis of indices frequently used in Sociometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Species’ distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970–2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes. 2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa. 3. Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased. 4. Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation. 5. Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation. 6. Not all species of a given type behaved similarly, suggesting that complex interactions between species’ attributes and different combinations of environmental drivers determine frequency of occurrence changes. 7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.