94 resultados para Local and remote sensors
Resumo:
The two major applications of microwave remote sensors are radiometer and radar. Because of its importance and the nature of the application, much research has been made on the various aspects of the radar. This paper will focus on the various aspects of the radiometer from a design point of view and the Low Noise Amplifier will be designed and implemented. The paper is based on a study in radio Frequency Communications engineering and understanding of electronic and RF circuits. Some research study about the radiometer and practical implementation of Low Noise Amplifier for Radiometer will be the main focus of this paper. Basically the paper is divided into two parts. In the first part some background study about the radiometer will be carried out and commonly used types of radiometer will be discussed. In the second part LNA for the radiometer will be designed.
Resumo:
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
Demand for local food in the United States has significantly increased over the last decade. In an attempt to understand the drivers of this demand and how they have changed over time, we investigate the literature on organic and local foods over the last few decades. We focus our review on studies that allow comparison of characteristics now associated with both local and organic food. We summarize the major findings of these studies and their implications for understanding drivers of local food demand. Prior to the late 1990s, most studies failed to consider factors now associated with local food, and the few that included these factors found very little support for them. In many cases, the lines between local and organic were blurred. Coincident with the development of federal organic food standards, studies began to find comparatively more support for local food as distinct and separate from organic food. Our review uncovers a distinct turn in the demand for local and organic food. Before the federal organic standards, organic food was linked to small farms, animal welfare, deep sustainability, community support, and many other factors that are not associated with most organic foods today. Based on our review, we argue that demand for local food arose largely in response to corporate cooptation of the organic food market and the arrival of “organic lite.” This important shift in consumer preferences away from organic and toward local food has broad implications for the environment and society. If these patterns of consumer preferences prove to be sustainable, producers, activists, and others should be aware of the implications that these trends have for the food system at large.
Resumo:
Galactic cosmic ray (GCR) flux is modulated by both particle drift patterns and solar wind structures on a range of timescales. Over solar cycles, GCR flux varies as a function of the total open solar magnetic flux and the latitudinal extent of the heliospheric current sheet. Over hours, drops of a few percent in near-Earth GCR flux (Forbush decreases, FDs) are well known to be associated with the near-Earth passage of solar wind structures resulting from corotating interaction regions (CIRs) and transient coronal mass ejections (CMEs). We report on four FDs seen at ground-based neutron monitors which cannot be immediately associated with significant structures in the local solar wind. Similarly, there are significant near-Earth structures which do not produce any corresponding GCR variation. Three of the FDs are during the STEREO era, enabling in situ and remote observations from three well-separated heliospheric locations. Extremely large CMEs passed the STEREO-A spacecraft, which was behind the West limb of the Sun, approximately 2–3 days before each near- Earth FD. Solar wind simulations suggest that the CMEs combined with pre-existing CIRs, enhancing the pre-existing barriers to GCR propagation. Thus these observations provide strong evidence for the modulation of GCR flux by remote solar wind structures.
Resumo:
Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.
Resumo:
Recent interest in the validation of general circulation models (GCMs) has been devoted to objective methods. A small number of authors have used the direct synoptic identification of phenomena together with a statistical analysis to perform the objective comparison between various datasets. This paper describes a general method for performing the synoptic identification of phenomena that can be used for an objective analysis of atmospheric, or oceanographic, datasets obtained from numerical models and remote sensing. Methods usually associated with image processing have been used to segment the scene and to identify suitable feature points to represent the phenomena of interest. This is performed for each time level. A technique from dynamic scene analysis is then used to link the feature points to form trajectories. The method is fully automatic and should be applicable to a wide range of geophysical fields. An example will be shown of results obtained from this method using data obtained from a run of the Universities Global Atmospheric Modelling Project GCM.
Resumo:
Recent sedimentological and palynological research on subfossil Holocene banded sediments from the Severn Estuary Levels suggested seasonality of deposition, registered by variations in mineral grain-size and pollen assemblages between different parts of the bands. Here we provide data that strengthen this interpretation from sampling of modern sediments and pollen deposition on an active mudflat and saltmarsh on the margin of the Severn Estuary, and comparison with a vegetation survey and contemporary records of climate, river and tidal regimes. The results of grain-size analysis indicate deposition of comparatively coarse-grained silts during the relatively cool and windy conditions of winter and comparatively fine-grained sediments during relatively warm and calm summer months. Pollen analysis demonstrates the significance of long-term storage of pollen grains and fern spores in the estuarine waterbody, superimposed on which seasonal variations in pollen inputs from local and regional vegetation remain detectable. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Experimental acoustic measurements on sandstone rocks at both sonic and ultrasonic frequencies show that fluid saturation can cause a noticeable change in both the dynamic bulk and shear elastic moduli of sandstones. We observed that the change in dynamic shear modulus upon fluid saturation is highly dependent on the type of saturant, its viscosity, rock microstructure, and applied pressures. Frequency dispersion has some influence on dynamic elastic moduli too, but its effect is limited to the ultrasonic frequency ranges and above. We propose that viscous coupling, reduction in free surface energy, and, to a limited extent, frequency dispersion due to both local and global flow are the main mechanisms responsible for the change in dynamic shear elastic modulus upon fluid saturation and substitution, and we quantify influences.
Resumo:
This article is about the politics of conservation in postcolonial Southern Africa. It focuses on the process and consequences of redefining the Nile crocodile as an endangered species and explores the linked local and international, commercial and conservationist interests that allowed the animal to re-establish itself in state-protected waterways in colonial and postcolonial contexts. It investigates the effects of the animal's successful re-accommodation by examining conflicts between crocodiles and the fishing communities sharing space on Lake Kariba, Zimbabwe. Fishermen's hostile representations of the animal emphasize competition for fish, harassment, fear, loss of assets and loss of life. Their fear of crocodiles is heightened by the animal's entanglement in local social life, through its association with witchcraft. The article emphasizes the importance of considering both hegemonic and marginalized ideas about animals in the light of the material interactions, relations of power and historical contexts that shape them. Understanding the attitudes and circumstances of the local communities who bear the physical and economic costs of living with dangerous animals is important-it threatens the future of conservation programmes and reveals the potential for significant abuses to accompany the conservation of wildlife in postcolonial contexts. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports changes in supraglacial debris cover and supra-/proglacial lake development associated with recent glacier retreat (1985-2000) in the central Caucasus Mountains, Russia. Satellite imagery (Landsat TM and ETM+) was used to map the surface area and supraglacial debris cover on six neighbouring glaciers in the Adylsu valley through a process of manual digitizing on a false-colour composite of bands 5, 4, 3 (red, green, blue). The distribution and surface area of supraglacial and proglacial lakes was digitized for a larger area, which extended to the whole Landsat scene. We also compare our satellite interpretations to field observations in the Adylsu valley. Supraglacial debris cover ranges from < 5% to > 25% on individual glaciers, but glacier retreat between 1985 and 2000 resulted in a 3-6% increase in the proportion of each glacier covered by debris. The only exception to this trend was a very small glacier where debris cover did not change significantly and remote mapping proved more difficult. The increase in debris cover is characterized by a progressive upglacier migration, which we suggest is being driven by focused ablation (and therefore glacier thinning) at the up-glacier limit of the debris cover, resulting in the progressive exposure of englacial debris. Glacier retreat has also been accompanied by an increase in the number of proglacial and supraglacial lakes in our study area, from 16 in 1985 to 24 in 2000, representing a 57% increase in their cumulative surface area. These lakes appear to be impounded by relatively recently lateral and terminal moraines and by debris deposits on the surface of the glacier. The changes in glacier surface characteristics reported here are likely to exert a profound influence on glacier mass balance and their future response to climate change. They may also increase the likelihood of glacier-related hazards (lake outbursts, debris slides), and future monitoring is recommended.
Resumo:
Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.