46 resultados para Load Balancing in Wireless LAN
Resumo:
The development of a combined engineering and statistical Artificial Neural Network model of UK domestic appliance load profiles is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 suburban households and 46 rural households during the summer of 2010 and2011 respectively. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with back propagation training which has a 12:10:24 architecture. Model outputs include appliance load profiles which can be applied to the fields of energy planning (microrenewables and smart grids), building simulation tools and energy policy.
Resumo:
Recursive Learning Control (RLC) has the potential to significantly reduce the tracking error in many repetitive trajectory applications. This paper presents an application of RLC to a soil testing load frame where non-adaptive techniques struggle with the highly nonlinear nature of soil. The main purpose of the controller is to apply a sinusoidal force reference trajectory on a soil sample with a high degree of accuracy and repeatability. The controller uses a feedforward control structure, recursive least squares adaptation algorithm and RLC to compensate for periodic errors. Tracking error is reduced and stability is maintained across various soil sample responses.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
In wireless communication systems, all in-phase and quadrature-phase (I/Q) signal processing receivers face the problem of I/Q imbalance. In this paper, we investigate the effect of I/Q imbalance on the performance of multiple-input multiple-output (MIMO) maximal ratio combining (MRC) systems that perform the combining at the radio frequency (RF) level, thereby requiring only one RF chain. In order to perform the MIMO MRC, we propose a channel estimation algorithm that accounts for the I/Q imbalance. Moreover, a compensation algorithm for the I/Q imbalance in MIMO MRC systems is proposed, which first employs the least-squares (LS) rule to estimate the coefficients of the channel gain matrix, beamforming and combining weight vectors, and parameters of I/Q imbalance jointly, and then makes use of the received signal together with its conjugation to detect the transmitted signal. The performance of the MIMO MRC system under study is evaluated in terms of average symbol error probability (SEP), outage probability and ergodic capacity, which are derived considering transmission over Rayleigh fading channels. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of I/Q imbalance.
Resumo:
Capacity dimensioning is one of the key problems in wireless network planning. Analytical and simulation methods are usually used to pursue the accurate capacity dimensioning of wireless network. In this paper, an analytical capacity dimensioning method for WCDMA with high speed wireless link is proposed based on the analysis on relations among system performance and high speed wireless transmission technologies, such as H-ARQ, AMC and fast scheduling. It evaluates system capacity in closed-form expressions from link level and system level. Numerical results show that the proposed method can calculate link level and system level capacity for WCDMA system with HSDPA and HSUPA.
Resumo:
Demand response is believed by some to become a major contributor towards system balancing in future electricity networks. Shifting or reducing demand at critical moments can reduce the need for generation capacity, help with the integration of renewables, support more efficient system operation and thereby potentially lead to cost and carbon reductions for the entire energy system. In this paper we review the nature of the response resource of consumers from different non-domestic sectors in the UK, based on extensive half hourly demand profiles and observed demand responses. We further explore the potential to increase the demand response capacity through changes in the regulatory and market environment. The analysis suggests that present demand response measures tend to stimulate stand-by generation capacity in preference to load shifting and we propose that extended response times may favour load based demand response, especially in sectors with significant thermal loads.
Resumo:
There is large diversity in simulated aerosol forcing among models that participated in the fifth Coupled Model Intercomparison Project (CMIP5), particularly related to aerosol interactions with clouds. Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of inter-model diversity in the magnitude of the cloud albedo effect. There is large diversity in the global load and spatial distribution of sulfate aerosol, as well as in global-mean cloud-top effective radius. The use of different parameterizations of aerosol-cloud interactions makes the largest contribution to diversity in modeled radiative forcing (up to -39%, +48% about the mean estimate). Uncertainty in pre-industrial sulfate load also makes a substantial contribution (-15%, +61% about the mean estimate), with smaller contributions from inter-model differences in the historical change in sulfate load and in mean cloud fraction.
Resumo:
An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
The relative fast processing speed requirements in Wireless Personal Area Network (WPAN) consumer based products are often in conflict with their low power and cost requirements. In order to solve this conflict the efficiency and cost effectiveness of these products and the underlying functional modules become paramount. This paper presents a low-cost, simple, yet high performance solution for the receiver Channel Estimator and Equalizer for the Mutiband OFDM (MB-OFDM) system, particularly directed to the WiMedia Consortium Physical Later (ECMA-368) consumer implementation for Wireless-USB and Fast Bluetooth. In this paper, the receiver fixed point performance is measured and the results indicate excellent performance compared to the current literature(1).
Resumo:
Most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronised. Since such an assumption is difficult to achieve in many practical systems, this paper proposes a simple yet optimum detector for the case of two relay nodes, which proves to be much more robust against timing misalignment than the conventional STBC detector.
Resumo:
Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference.
Resumo:
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.