53 resultados para Intercomparison EQUAL-ESTRO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd ) compares relatively well to the satellite data at least over the ocean. The relationship between �a and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and �a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–�a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between �a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - �a relationship show a strong positive correlation between �a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of �a, and parameterisation assumptions such as a lower bound on Nd . Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic �a and satellite-retrieved Nd–�a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated multi-model “diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated “host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47Wm−2 and the inter-model standard deviation is 0.55Wm−2, corresponding to a relative standard deviation of 12 %. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04Wm−2, and the standard deviation increases to 1.01W−2, corresponding to a significant relative standard deviation of 97 %. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45Wm−2 (8 %) clear-sky and 0.62Wm−2 (11 %) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the Aero- Com Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11Wm−2 in the AeroCom Direct Radiative Effect experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some climatological information from 14 atmospheric general circulation models is presented and compared in order to assess the ability of a broad group of models to simulate current climate. The quantities considered are cross sections of temperature, zonal wind, and meridional stream function together with latitudinal distributions of mean sea level pressure and precipitation rate. The nature of the deficiencies in the simulated climates that are common to all models and those which differ among models is investigated; the general improvement in the ability of models to simulate certain aspects of the climate is shown; consideration is given to the effect of increasing resolution on simulated climate; and approaches to understanding and reducing model deficiencies are discussed. The information presented here is a subset of a more voluminous compilation which is available in report form (Boer et al., 1991). This report contains essentially the same text, but results from all 14 models are presented together with additional results in the form of geographical distributions of surface variables and certain difference statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climatological information from fourteen atmospheric general circulation models is presented and compared in order to assess the ability of a broad group of models to simulate current climate. The quantities considered are cross sections of temperature, zonal wind and meridional stream function together with latitudinal distributions of mean sea-level pressure and precipitation rate. The nature of the deficiencies in the simulated climates that are common to all models and those which differ among models is investigated, general improvement in the ability of models to simulate certain aspects of the climate is shown, consideration is given to the effect of increasing resolution on simulated climate and approaches to the understanding and reduction of model deficiencies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amplification of the northern hemisphere seasonal cycle of insolation during the mid-Holocene causes a northward shift of the main regions of monsoon precipitation over Africa and India in all 18 simulations conducted for the Paleoclimate Modeling Intercomparison Project (PMIP). Differences among simulations are related to differences in model formulation. Despite qualitative agreement with paleoecological estimates of biome shifts, the magnitude of the monsoon increases over northern Africa are underestimated by all the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro–Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra–forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydro-graph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ di↵erent numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should—except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably di↵erent. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively di↵erent behavior—although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.