35 resultados para Harmonic Oscillator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a two-variable model which describes the interaction between local baroclinicity and eddy heat flux in order to understand aspects of the variance in storm tracks. It is a heuristic model for diabatically forced baroclinic instability close to baroclinic neutrality. The two-variable model has the structure of a nonlinear oscillator. It exhibits some realistic properties of observed storm track variability, most notably the intermittent nature of eddy activity. This suggests that apparent threshold behaviour can be more accurately and succinctly described by a simple nonlinearity. An analogy is drawn with triggering of convective events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC) solution. Here a new combination rule, the harmonic vector average (HVA), is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The HVA, however, provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the IOC direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the HVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let H ∈ C 2(ℝ N×n ), H ≥ 0. The PDE system arises as the Euler-Lagrange PDE of vectorial variational problems for the functional E ∞(u, Ω) = ‖H(Du)‖ L ∞(Ω) defined on maps u: Ω ⊆ ℝ n → ℝ N . (1) first appeared in the author's recent work. The scalar case though has a long history initiated by Aronsson. Herein we study the solutions of (1) with emphasis on the case of n = 2 ≤ N with H the Euclidean norm on ℝ N×n , which we call the “∞-Laplacian”. By establishing a rigidity theorem for rank-one maps of independent interest, we analyse a phenomenon of separation of the solutions to phases with qualitatively different behaviour. As a corollary, we extend to N ≥ 2 the Aronsson-Evans-Yu theorem regarding non existence of zeros of |Du| and prove a maximum principle. We further characterise all H for which (1) is elliptic and also study the initial value problem for the ODE system arising for n = 1 but with H(·, u, u′) depending on all the arguments.