45 resultados para Gastric evacuation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major carbohydrates of white and red-flesh pitayas (dragon fruit) were glucose, fructose and some oligosaccharides (total concentrations of 86.2 and 89.6 g/kg, respectively). The molecular weight distribution of the extract was affected by the extraction solvent. The maximum oligosaccharides content (27.40%), which included fractions with molecular weights of 273–275, 448–500 and 787–911 Da, were obtained using 80% ethanol extraction at room temperature (28 ± 2 °C). The low molecular weight fraction, including glucose and fructose, was successfully removed by yeast cultivation. The molecular weights of mixed oligosaccharides (716, 700, 490 and 474 Da) were confirmed by mass spectrometry. The mixed oligosaccharides showed that they were resistant to hydrolysis by artificial human gastric juice and human α-amylase, giving maximum hydrolysis of 4.04% and 34.88%, respectively. The mixed oligosaccharides were also found capable of stimulating the growth of lactobacilli and bifidobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan and its half-acetylated derivative have been compared as excipients in mucoadhesive tablets containing ibuprofen. Initially the powder formulations containing the polymers and the drug were prepared by either co-spray drying or physical co-grinding. Polymer–drug interactions and the degree of drug crystallinity in these formulations were assessed by infrared spectroscopy and differential scanning calorimetry. Tablets were prepared and their swelling and dissolution properties were studied in media of various pHs. Mucoadhesive properties of ibuprofen-loaded and drug-free tablets were evaluated by analysing their detachment from pig gastric mucosa over a range of pHs. Greater polymer–drug interactions were seen for spray-dried particles compared to co-ground samples and drug loading into chitosan-based microparticles (41%) was greater than the corresponding half-acetylated samples (32%). Swelling and drug release was greater with the half-acetylated chitosan tablets than tablets containing the parent polymer and both tablets were mucoadhesive, the extent of which was dependent on substrate pH. The results illustrate the potential sustained drug delivery benefits of both chitosan and its half-acetylated derivative as mucoadhesive tablet excipients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the effect of multi-layer coating of alginate beads on the survival of encapsulated Lactobacillus plantarum in simulated gastric solution and during storage in pomegranate juice at 4 °C. Uncoated, single and double chitosan coated beads were examined. The survival of the cells in simulated gastric solution (pH 1.5) was improved in the case of the chitosan coated beads by 0.5–2 logs compared to the uncoated beads. The cell concentration in pomegranate juice after six weeks of storage was higher than 5.5 log CFU/mL for single and double coated beads, whereas for free cells and uncoated beads the cells died after 4 weeks of storage. In simulated gastric solution, the size of the beads decreased and their hardness increased with time; however, the opposite trend was observed for pomegranate juice, indicating that there is no correlation between cell survival and the hardness of the beads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using ‘prebiotics’, which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a ‘synbiotic’. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate–chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6 h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 log CFU/mL cells in acid, an improvement over alginate–chitosan microencapsulation of 1.4 log CFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major hurdle in producing a useful probiotic food product is bacterial survival during storage and ingestion. The aim of this study was to test the effect of γ-PGA immobilisation on the survival of probiotic bacteria when stored in acidic fruit juice. Fruit juices provide an alternative means of probiotic delivery, especially to lactose intolerant individuals. In addition, the survival of γ-PGA-immobilised cells in simulated gastric juice was also assessed. Bifidobacteria strains (B. longum, B. breve), immobilised on 2.5 % γ-PGA, survived significantly better (P < 0.05) in orange and pomegranate juice for 39 and 11 days respectively, compared to free cells. However, cells survived significantly better (P < 0.05) when stored in orange juice compared to pomegranate juice. Moreover, both strains, when protected with 2.5 % γ-PGA, survived in simulated gastric juice (pH 2.0) with a marginal reduction (<0.47 log CFU/ml) or no significant reduction in viable cells after four hours, whereas free cells died within two hours. In conclusion, this research indicates that γ-PGA can be used to protect Bifidobacteria cells in fruit juice, and could also help improve the survival of cells as they pass through the harsh conditions of the gastrointestinal tract (GIT). Following our previous report on the use of γ-PGA as a cryoprotectant for probiotic bacteria, this research further suggests that γ-PGA could be used to improve probiotic survival during the various stages of preparation, storage and ingestion of probiotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-stage continuous fermentative colonic model system was used to monitor in vitro the effect of different orange juice formulations on prebiotic activity. Three different juices with and without Bimuno, a GOS mixture containing galactooligosaccharides (B-GOS) were assessed in terms of their ability to induce a bifidogenic microbiota. The recipe development was based on incorporating 2.75g B-GOS into a 250 ml serving of juice (65°Brix of concentrate juice). Alongside the production of B-GOS juice, a control juice - orange juice without any additional Bimuno and a positive control juice, containing all the components of Bimuno (glucose, galactose and lactose) in the same relative proportions with the exception of B-GOS were developed. Ion Exchange Chromotography analysis was used to test the maintenance of bimuno components after the production process. Data showed that sterilisation had no significant effect on concentration of B-GOS and simple sugars. The three juice formulations were digested under conditions resembling the gastric and small intestinal environments. Main bacterial groups of the faecal microbiota were evaluated throughout the colonic model study using 16S rRNA-based fluorescence in situ hybridization (FISH). Potential effects of supplementation of the juices on microbial metabolism were studied measuring short chain fatty acids (SCFAs) using gas chromatography. Furthermore, B-GOS juices showed positive modulations of the microbiota composition and metabolic activity. In particular, numbers of faecal bifidobacteria and lactobacilli were significantly higher when B-GOS juice was fermented compared to controls. Furthermore, fermentation of B-GOS juice resulted in an increase in Roseburia subcluster and concomitantly increased butyrate production, which is of potential benefit to the host. In conclusion, this study has shown B-GOS within orange juice can have a beneficial effect on the fecal microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycopolymer hydrogels capable of mimicking mucosal tissue in mucoadhesion testing have been designed. Liquid formulations containing mucoadhesive polymers were found to be retained on these tissues to the same extent as ex vivo gastric mucosa, when using a dynamic method of assessing mucoadhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancies