41 resultados para Drug delivery mechanism


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The layer-by-layer deposition of polymers onto surfaces allows the fabrication of multilayered materials for a wide range of applications, from drug delivery to biosensors. This work describes the analysis of complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions using Biacore, a surface plasmon resonance analytical technique, traditionally used to examine biological interactions. This technique characterized the layer-by-layer deposition of these polymers on the surface of a Biacore sensor chip. The results were subsequently used to optimize the experimental conditions for sequential layer deposition on glass slides. The role of the solution pH and poly(acrylic acid) molecular weight on the formation of interpolymer multilayered coatings was researched, and showed that the optimal deposition of the polymer complexes was achieved at pHs ≤2.5 with a poly(acrylic acid) molecular weight of 450 kDa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New ampholyte biomaterial compounds containing ampholyte moieties are synthesized and integrated into polymeric assemblies to provide hydrophilic polymers exhibiting improved biocompatibility, haemocompatibility, hydrophilicity non-thrombogenicity, anti-bacterial ability, and mechanical strength, as well as suitability as a drug delivery platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Respiratory infections represent the fourth most common cause of all deaths across age groups and countries. Treating these infections appropriately is a clear clinical priority and here we outline the types of therapy that are in current use for some of these infections. It is important that treatments are further improved and the potential of inhaled delivery to fulfil this need is considered. We describe novel methodologies that are being applied for the identification and enumeration of microorganisms in the respiratory tract, and propose that ways of improving therapy may arise from understanding better the etiology of respiratory infection and the impact of inhaled drug therapies. The potential for translational benefits for patients are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interpolymer complexes (IPCs) formed between complimentary polymers in solution have shown a wide range of applications from drug delivery to biosensors. This work describes the combined use of isothermal titration calorimetry and surface plasmon resonance to investigate the thermodynamic and kinetic processes during hydrogen-bonded interpolymer complexation. Varied polymers that are commonly used in layer-by-layer coatings and pharmaceutical preparations were selected to span a range of chemical functionalities including some known IPCs previously characterized by other techniques, and other polymer combinations with unknown outcomes. This work is the first to comprehensively detail the thermodynamic and kinetic data of hydrogen bonded IPCs, aiding understanding and detailed characterization of the complexes. The applicability of the two techniques in determining thermodynamic, gravimetric and kinetic properties of IPCs is considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and wound dressings. This review provides an analysis of their main characteristics and biomedical applications. From Wichterle’s pioneering work to the most recent hydrogel-based inventions and products on the market, it provides the reader with a detailed introduction to the topic and perspective on further potential developments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20–27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.