37 resultados para Computational learning theory
Resumo:
This article reports on an ethnographic study involving the literacy practices of two multilingual Chinese children from two similar yet different cultural and linguistic contexts: Montreal and Singapore. Using syncretism as a theoretical tool, this inquiry examines how family environment and support facilitate children’s process of becoming literate in multiple languages. Informed by sociocultural theory, the inquiry looks in particular at the role of grandparents in the syncretic literacy practices of children. Through comparative analysis, the study reveals similarities and differences that, when considered together, contribute to our understanding of multilingual children’s creative forms of learning with regard to their rich literacy resources in multiple languages, the imperceptible influences of mediators, various learning styles and syncretic literacy practices.
Resumo:
Despite the wealth of valuable information that has been generated by motivation studies to date, there are certain limitations in the common approaches. Quantitative and psychometric approaches to motivation research that have dominated in recent decades provided epiphenomenal descriptions of learner motivation within different contexts. However, these approaches assume homogeneity within a given group and often mask the variation between learners within the same, and different, contexts. Although these studies have provided empirical data to form and validate theoretical constructs, they have failed to recognise learners as individual ‘people’ that interact with their context. Learning context has become increasingly explicit in motivation studies, (see Coleman et al. 2007 and Housen et al. 2011), however it is generally considered as a background variable which is pre-existing and external to the individual. Stemming from the recent ‘social turn’ (Block 2003) in SLA research from a more cognitive-linguistic perspective to a more context-specific view of language learning, there has been an upsurge in demand for a greater focus on the ‘person in context’ in motivation research (Ushioda 2011). This paper reports on the findings of a longitudinal study of young English learners of French as they transition from primary to secondary school. Over 12 months, the study employed a mixed-method approach in order to gain an in-depth understanding of how the learners’ context influenced attitudes to language learning. The questionnaire results show that whilst the learners displayed some consistent and stable motivational traits over the 12 months, there were significant differences for learners within different contexts in terms of their attitudes to the language classroom and their levels of self-confidence. A subsequent examination of the qualitative focus group data provided an insight into how and why these attitudes were formed and emphasised the dynamic and complex interplay between learners and their context.
Resumo:
The term neural population models (NPMs) is used here as catchall for a wide range of approaches that have been variously called neural mass models, mean field models, neural field models, bulk models, and so forth. All NPMs attempt to describe the collective action of neural assemblies directly. Some NPMs treat the densely populated tissue of cortex as an excitable medium, leading to spatially continuous cortical field theories (CFTs). An indirect approach would start by modelling individual cells and then would explain the collective action of a group of cells by coupling many individual models together. In contrast, NPMs employ collective state variables, typically defined as averages over the group of cells, in order to describe the population activity directly in a single model. The strength and the weakness of his approach are hence one and the same: simplification by bulk. Is this justified and indeed useful, or does it lead to oversimplification which fails to capture the pheno ...
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
Resumo:
People vary in the extent to which they prefer cooperative, competitive or individualistic achievement tasks. In the present research, we conducted two studies designed to investigate correlates and possible roots of these social interdependence orientations, namely approach and avoidance temperament, general self-efficacy, implicit theories of intelligence, and contingencies of self-worth based in others’ approval, competition, and academic competence. The results indicated that approach temperament, general self-efficacy, and incremental theory were positively, and entity theory was negatively related to cooperative preferences (|r| range from .11 to .41); approach temperament, general self-efficacy, competition contingencies, and academic competence contingencies were positively related to competitive preferences (|r| range from .16 to .46); and avoidance temperament, entity theory, competitive contingencies, and academic competence contingencies were positively related, and incremental theory was negatively related to individualistic preferences (|r| range from .09 to .15). The findings are discussed with regard to the meaning of each of the three social interdependence orientations, cultural differences among the observed relations, and implications for practicioners.
Resumo:
Taking a generative perspective, we divide aspects of language into three broad categories: those that cannot be learned (are inherent in Universal Grammar), those that are derived from Universal Grammar, and those that must be learned from the input. Using this framework of language to clarify the “what” of learning, we take the acquisition of null (and overt) subjects in languages like Spanish as an example of how to apply the framework. We demonstrate what properties of a null-subject grammar cannot be learned explicitly, which properties can, but also argue that it is an open empirical question as to whether these latter properties are learned using explicit processes, showing how linguistic and psychological approaches may intersect to better understand acquisition.