69 resultados para APPROXIMATIONS
Resumo:
We consider the two-point boundary value problem for stiff systems of ordinary differential equations. For systems that can be transformed to essentially diagonally dominant form with appropriate smoothness conditions, a priori estimates are obtained. Problems with turning points can be treated with this theory, and we discuss this in detail. We give robust difference approximations and present error estimates for these schemes. In particular we give a detailed description of how to transform a general system to essentially diagonally dominant form and then stretch the independent variable so that the system will satisfy the correct smoothness conditions. Numerical examples are presented for both linear and nonlinear problems.
Resumo:
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit.
Resumo:
Asymptotic expressions are derived for the mountain wave drag in flow with constant wind and static stability over a ridge when both rotation and non-hydrostatic effects are important. These expressions, which are much more manageable than the corresponding exact drag expressions (when these do exist) are found to provide accurate approximations to the drag, even when non-hydrostatic and rotation effects are strong, despite having been developed for cases where these effects are weak. The derived expressions are compared with approximations to the drag found previously, and their asymptotic behaviour in various limits is studied.
Resumo:
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Resumo:
A method to solve a quasi-geostrophic two-layer model including the variation of static stability is presented. The divergent part of the wind is incorporated by means of an iterative procedure. The procedure is rather fast and the time of computation is only 60–70% longer than for the usual two-layer model. The method of solution is justified by the conservation of the difference between the gross static stability and the kinetic energy. To eliminate the side-boundary conditions the experiments have been performed on a zonal channel model. The investigation falls mainly into three parts: The first part (section 5) contains a discussion of the significance of some physically inconsistent approximations. It is shown that physical inconsistencies are rather serious and for these inconsistent models which were studied the total kinetic energy increased faster than the gross static stability. In the next part (section 6) we are studying the effect of a Jacobian difference operator which conserves the total kinetic energy. The use of this operator in two-layer models will give a slight improvement but probably does not have any practical use in short periodic forecasts. It is also shown that the energy-conservative operator will change the wave-speed in an erroneous way if the wave-number or the grid-length is large in the meridional direction. In the final part (section 7) we investigate the behaviour of baroclinic waves for some different initial states and for two energy-consistent models, one with constant and one with variable static stability. According to the linear theory the waves adjust rather rapidly in such a way that the temperature wave will lag behind the pressure wave independent of the initial configuration. Thus, both models give rise to a baroclinic development even if the initial state is quasi-barotropic. The effect of the variation of static stability is very small, qualitative differences in the development are only observed during the first 12 hours. For an amplifying wave we will get a stabilization over the troughs and an instabilization over the ridges.
Resumo:
Brain activity can be measured non-invasively with functional imaging techniques. Each pixel in such an image represents a neural mass of about 105 to 107 neurons. Mean field models (MFMs) approximate their activity by averaging out neural variability while retaining salient underlying features, like neurotransmitter kinetics. However, MFMs incorporating the regional variability, realistic geometry and connectivity of cortex have so far appeared intractable. This lack of biological realism has led to a focus on gross temporal features of the EEG. We address these impediments and showcase a "proof of principle" forward prediction of co-registered EEG/fMRI for a full-size human cortex in a realistic head model with anatomical connectivity, see figure 1. MFMs usually assume homogeneous neural masses, isotropic long-range connectivity and simplistic signal expression to allow rapid computation with partial differential equations. But these approximations are insufficient in particular for the high spatial resolution obtained with fMRI, since different cortical areas vary in their architectonic and dynamical properties, have complex connectivity, and can contribute non-trivially to the measured signal. Our code instead supports the local variation of model parameters and freely chosen connectivity for many thousand triangulation nodes spanning a cortical surface extracted from structural MRI. This allows the introduction of realistic anatomical and physiological parameters for cortical areas and their connectivity, including both intra- and inter-area connections. Proper cortical folding and conduction through a realistic head model is then added to obtain accurate signal expression for a comparison to experimental data. To showcase the synergy of these computational developments, we predict simultaneously EEG and fMRI BOLD responses by adding an established model for neurovascular coupling and convolving "Balloon-Windkessel" hemodynamics. We also incorporate regional connectivity extracted from the CoCoMac database [1]. Importantly, these extensions can be easily adapted according to future insights and data. Furthermore, while our own simulation is based on one specific MFM [2], the computational framework is general and can be applied to models favored by the user. Finally, we provide a brief outlook on improving the integration of multi-modal imaging data through iterative fits of a single underlying MFM in this realistic simulation framework.
Resumo:
Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.
Resumo:
Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm.
Resumo:
In this paper it is shown that a number of theoretical models of the acoustical properties of rigid frame porous media, especially those involving ratios of Bessel functions of complex argument, can be accurately approximated and greatly simplified by the use of Padé approximation techniques. In the case of the model of Attenborough [J. Acoust. Soc. Am. 81, 93–102 (1987)] rational approximations are produced for the characteristic impedance, propagation constant, dynamic compressibility, and dynamic density, as a function of frequency and the material parameters. The model proposed by Stinson and Champoux
Resumo:
This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.
Resumo:
A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.