37 resultados para uniform spacing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results for thermal comfort assessment in non-uniform thermal environments. Three types of displacement ventilation (DV) units that created stratified condition in an environmental test chamber have been selected to carry out the thermal comfort assessment: a flat diffuser (DV1), semi-circular diffuser (DV2), and floor swirl diffuser (DV3). The CBE (Center for the Built Environment at Berkeley) comfort model was implemented in this study to assess the occupant’s thermal comfort for the three DV types. The CBE model predicted the occupant’s mean skin as well as local skin temperatures very well when compared with measurements found in the literature, while it underestimated the occupant’s core temperature. The predicted occupant’s thermal sensation and thermal comfort for the case of (DV2) were the best. Therefore, the semi-circular diffuser (DV2) provided better thermal comfort for the occupant in comparison with the other two DV types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star-shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star-combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second-kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star-combined operator implies frequency-explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high-frequency case. The proof of coercivity of the star-combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is one of the first papers in which arguments are given to treat code-switching and borrowing as similar phenomena. It is argued that it is theoretically undesirable to distinguish both phenomena, and empirically very problematic. A probabilistic account of code-switching and a hierarchy of switched constituents (similar to hierarchies of borrowability) are proposed which account for the fact that some constituents are more likely to be borrowed/switched than others. It is argued that the same kinds of constraints apply to both code-switching and borrowing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.