32 resultados para tin
Resumo:
Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.
Resumo:
Reaction of tin(II) chloride with Li(CPhCPh2) at –78 °C in diethyl ether–hexane–tetrahydrofuran affords a deep red solution whose colour fades on warming, and which we believe contains the (unstable) first dialkenyltin(II) species. The latter survives long enough at low temperatures to undergo intermolecular oxidative addition, and one such adduct leads ultimately to the formation of Sn(CPhCPh2)3Bun, which has been fully characterised including a crystal and molecular structure study. The mechanism of formation of the final product has been examined and results are reported.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.
Resumo:
Barium ferrites substituted by Mn–Sn, Co–Sn, and Mn–Co–Sn with general formulae BaFe12−2xMnxSnxO19 (x=0.2–1.0), BaFe12−2xCoxSnxO19 (x=0.2–0.8), and BaFe12−2xCox/2Mnx/2SnxO19 (x=0.1–0.6), respectively, have been prepared by a previously reported co-precipitation method. The efficiency of the method was refined by lowering the reaction temperature and shortening the required reaction time, due to which crystallinity improved and the value of saturated magnetization increased as well. Low coercivity temperature coefficients, which are adjustable by doping, were achieved by Mn–Sn and Mn–Co–Sn doping. Synthesis efficiency and the effect of doping are discussed taking into account accumulated data concerning the synthesis and crystal structure of ferrites.
Resumo:
In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Many compounds in the environment have been shown capable of binding to cellular oestrogen receptors and then mimicking the actions of physiological oestrogens. The widespread origin and diversity in chemical structure of these environmental oestrogens is extensive but to date such compounds have been organic and in particular phenolic or carbon ring structures of varying structural complexity. Recent reports of the ability of certain metal ions to also bind to oestrogen receptors and to give rise to oestrogen agonist responses in vitro and in vivo has resulted in the realisation that environmental oestrogens can also be inorganic and such xenoestrogens have been termed metalloestrogens. This report highlights studies which show metalloestrogens to include aluminium, antimony, arsenite, barium, cadmium, chromium (Cr(II)), cobalt, copper, lead, mercury, nickel, selenite, tin and vanadate. The potential for these metal ions to add to the burden of aberrant oestrogen signalling within the human breast is discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.
Resumo:
Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as pure colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several marine organisms, including the common grazer, Chlorostoma argyrostoma and settlement by larvae of the barnacles, Tetraclita japonica, Balanus amphitrite and Ibla cumingii. The natural concentration of maculalactone A varied with season and also with tidal height on the shore and although a strong positive linear correlation was observed between maculalactone A concentration and herbivore grazing pressure, manipulative experiments demonstrated that grazing pressure was not directly responsible for inducing the biosynthesis of this metabolite. The potential of maculalactone A as a natural marine anti-fouling agent (i.e. as an alternative to environmentally-damaging copper- and tin-based anti-fouling paints) was investigated after achieving a gram-scale synthesis of this compound. Preliminary field trials with anti-fouling paints which contained synthetic maculalactone A as the active principle have confirmed that this compound seems to have a specific activity against molluscan settlers.
Resumo:
Heterometallic raft clusters have been obtained previously for a variety of metals but none for tin and iridium, and more significantly none to date have had metal groups bonded above the raft plane. We report a hexametallic Ir4Sn2 raft to which a third tin group is attached by a single short IrSn bond and three IrOSn bridges.
Resumo:
The relevance of the concept of ‘Late Antiquity’ to fifth- and sixth-century Western Britain is demonstrated with reference to the archaeology of the British kingdom of Dumnonia, and then used to reinterpret portable material culture. Themes discussed include the dating of Palestinian amphorae in Britain, the extent of the settlement at Tintagel, tin as a motivation for Byzantine trade, the re-use of Roman-period artefacts, and ‘Anglo-Saxon’ artefacts on Western British sites. The central paradoxes of Late Antiquity: simultaneous conservatism and fluidity, continuity and innovation, are seen to illuminate ‘Dark Age’ Britain and offer new avenues for future research.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.