19 resultados para system stability
Resumo:
In this study, the performance, yield and characteristics of a 15 year old photovoltaic system installation has been investigated. The technology, BP Saturn modules which were steel-blue polycrystalline silicon cells are no longer in production. A bespoke monitoring system was designed and purpose built to monitor the characteristics of 6 strings, of 18 modules connected in series. The total output of the system is configured to 6.5kWp (series to parallel configuration). The PV system is demonstrating system outputs to be inferior by 0.7% per year. However,efficiency values in comparison to standard test conditions have remained practically the same. This output though very relevant to the possible performance and stability of aging cells, requires additional parametric studies to develop a more robust argument. The result presented in this paper is part of an on going investigation into PV system aging effects.
Resumo:
In this study, the performance, yield and characteristics of a 16 year old photovoltaic (PV) system installation have been investigated. The technology, BP Saturn modules which were steel-blue polycrystalline silicon cells are no longer in production. A bespoke monitoring system has been designed to monitor the characteristics of 6 refurbished strings, of 18 modules connected in series. The total output of the system is configured to 6.5 kWp (series to parallel configuration). In addition to experimental results, the performance ratio (PR) of known values was simulated using PVSyst, a simulation software package. From calculations using experimental values, the PV system showed approximately 10% inferior power outputs to what would have been expected as standard test conditions. However, efficiency values in comparison to standard test conditions and the performance ratio (w75% from PVSyst simulations) over the past decade have remained practically the same. This output though very relevant to the possible performance and stability of aging cells, requires additional parametric studies to develop a more robust argument. The result presented in this paper is part of an on-going investigation into PV system aging effects.
Resumo:
Simple predator–prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the ‘paradox of enrichment’. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator–prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator–prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer–grazer system persists for only an intermediate zone of production—a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator–prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig’s paradox.
Resumo:
In theory, enrichment of resource in a predator-prey model leads to destabilization of the system, thereby collapsing the trophic interaction, a phenomenon referred to as "the paradox of enrichment". After it was first proposed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator-prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form, inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that, although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms, which may differ among systems, need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.