38 resultados para Turbulence
Resumo:
The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with ρ+/ρ− ≪ 1 and u0+/u0− ≪ 1, then uI/u0− ~ 1 when Re (=u0−L−/ν−) ≫ 1 and R = (ρ−/ρ+)(v−/v+)1/2 ≫ 1. If the turbulence is driven in the upper layer with ρ+/ρ− ≪ 1 and u0+/u0− ≫ 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106–107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (ρ+/ρ−)1/2 ~ 1/30 for air–water interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs.
Resumo:
Recent research has shown that Lighthill–Ford spontaneous gravity wave generation theory, when applied to numerical model data, can help predict areas of clear-air turbulence. It is hypothesized that this is the case because spontaneously generated atmospheric gravity waves may initiate turbulence by locally modifying the stability and wind shear. As an improvement on the original research, this paper describes the creation of an ‘operational’ algorithm (ULTURB) with three modifications to the original method: (1) extending the altitude range for which the method is effective downward to the top of the boundary layer, (2) adding turbulent kinetic energy production from the environment to the locally produced turbulent kinetic energy production, and, (3) transforming turbulent kinetic energy dissipation to eddy dissipation rate, the turbulence metric becoming the worldwide ‘standard’. In a comparison of ULTURB with the original method and with the Graphical Turbulence Guidance second version (GTG2) automated procedure for forecasting mid- and upper-level aircraft turbulence ULTURB performed better for all turbulence intensities. Since ULTURB, unlike GTG2, is founded on a self-consistent dynamical theory, it may offer forecasters better insight into the causes of the clear-air turbulence and may ultimately enhance its predictability.
Resumo:
A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.
Resumo:
The characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account by considering a sudden insertion of the T/NT interface, in the absence of mean shear. Profiles of the velocity variances, turbulent kinetic energy (TKE), viscous dissipation rate (epsilon), turbulence length scales, and pressure statistics are derived, showing an excellent agreement with results from direct numerical simulations (DNS). Interestingly, the normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. Outside the turbulent region, where the flow is irrotational (except inside a thin viscous boundary layer), epsilon decays as z^{-6}, where z is the distance from the T/NT interface. The mean pressure distribution is calculated using RDT, and exhibits a decrease towards the turbulence region due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and epsilon display large maxima at the T/NT interface due to the inviscid discontinuities of the tangential velocity variances existing there, and these maxima are quantitatively related to the thickness delta of the viscous boundary layer (VBL). For an equilibrium VBL, the RDT analysis suggests that delta ~ eta (where eta is the Kolmogorov microscale), which is consistent with the scaling law identified in a very recent DNS study for shear-free T/NT interfaces.
Resumo:
The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).
Resumo:
A rapid-distortion model is developed to investigate the interaction of weak turbulence with a monochromatic irrotational surface water wave. The model is applicable when the orbital velocity of the wave is larger than the turbulence intensity, and when the slope of the wave is sufficiently high that the straining of the turbulence by the wave dominates over the straining of the turbulence by itself. The turbulence suffers two distortions. Firstly, vorticity in the turbulence is modulated by the wave orbital motions, which leads to the streamwise Reynolds stress attaining maxima at the wave crests and minima at the wave troughs; the Reynolds stress normal to the free surface develops minima at the wave crests and maxima at the troughs. Secondly, over several wave cycles the Stokes drift associated with the wave tilts vertical vorticity into the horizontal direction, subsequently stretching it into elongated streamwise vortices, which come to dominate the flow. These results are shown to be strikingly different from turbulence distorted by a mean shear flow, when `streaky structures' of high and low streamwise velocity fluctuations develop. It is shown that, in the case of distortion by a mean shear flow, the tendency for the mean shear to produce streamwise vortices by distortion of the turbulent vorticity is largely cancelled by a distortion of the mean vorticity by the turbulent fluctuations. This latter process is absent in distortion by Stokes drift, since there is then no mean vorticity. The components of the Reynolds stress and the integral length scales computed from turbulence distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulence reported by McWilliams, Sullivan & Moeng (1997). Hence we suggest that turbulent vorticity in the upper ocean, such as produced by breaking waves, may help to provide the initial seeds for Langmuir circulations, thereby complementing the shear-flow instability mechanism developed by Craik & Leibovich (1976). The tilting of the vertical vorticity into the horizontal by the Stokes drift tends also to produce a shear stress that does work against the mean straining associated with the wave orbital motions. The turbulent kinetic energy then increases at the expense of energy in the wave. Hence the wave decays. An expression for the wave attenuation rate is obtained by scaling the equation for the wave energy, and is found to be broadly consistent with available laboratory data.
Resumo:
The rapid-distortion model of Hunt & Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface. The model is shown to be formally valid provided two conditions are satisfied. The first condition is that time is short compared with the decorrelation time of the energy-containing eddies, so that nonlinear processes can be neglected. The second condition is that the viscous layer near the boundary, where tangential motions adjust to the boundary condition, is thin compared with the scales of the smallest eddies. The viscous layer can then be treated using thin-boundary-layer methods. Given these conditions, the distorted turbulence near the boundary is related to the undistorted turbulence, and thence profiles of turbulence dissipation rate near the two types of boundary are calculated and shown to agree extremely well with profiles obtained by Perot & Moin (1993) by direct numerical simulation. The dissipation rates are higher near a solid wall than in the bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the viscous layer. In contrast, the weaker constraint of no stress at a free surface leads to the dissipation rate close to a free surface actually being smaller than in the bulk of the flow. This explains why tangential velocity fluctuations parallel to a free surface are so large. In addition we show that it is the adjustment of the large energy-containing eddies across the viscous layer that controls the dissipation rate, which explains why rapid-distortion theory can give quantitatively accurate values for the dissipation rate. We also find that the dissipation rate obtained from the model evaluated at the time when the model is expected to fail actually yields useful estimates of the dissipation obtained from the direct numerical simulation at times when the nonlinear processes are significant. We conclude that the main role of nonlinear processes is to arrest growth by linear processes of the viscous layer after about one large-eddy turnover time.
Resumo:
The turbulent mixing in thin ocean surface boundary layers (OSBL), which occupy the upper 100 m or so of the ocean, control the exchange of heat and trace gases between the atmosphere and ocean. Here we show that current parameterizations of this turbulent mixing lead to systematic and substantial errors in the depth of the OSBL in global climate models, which then leads to biases in sea surface temperature. One reason, we argue, is that current parameterizations are missing key surface-wave processes that force Langmuir turbulence that deepens the OSBL more rapidly than steady wind forcing. Scaling arguments are presented to identify two dimensionless parameters that measure the importance of wave forcing against wind forcing, and against buoyancy forcing. A global perspective on the occurrence of waveforced turbulence is developed using re-analysis data to compute these parameters globally. The diagnostic study developed here suggests that turbulent energy available for mixing the OSBL is under-estimated without forcing by surface waves. Wave-forcing and hence Langmuir turbulence could be important over wide areas of the ocean and in all seasons in the Southern Ocean. We conclude that surfacewave- forced Langmuir turbulence is an important process in the OSBL that requires parameterization.
Resumo:
This study is concerned with how the attractor dimension of the two-dimensional Navier–Stokes equations depends on characteristic length scales, including the system integral length scale, the forcing length scale, and the dissipation length scale. Upper bounds on the attractor dimension derived by Constantin, Foias and Temam are analysed. It is shown that the optimal attractor-dimension estimate grows linearly with the domain area (suggestive of extensive chaos), for a sufficiently large domain, if the kinematic viscosity and the amplitude and length scale of the forcing are held fixed. For sufficiently small domain area, a slightly “super-extensive” estimate becomes optimal. In the extensive regime, the attractor-dimension estimate is given by the ratio of the domain area to the square of the dissipation length scale defined, on physical grounds, in terms of the average rate of shear. This dissipation length scale (which is not necessarily the scale at which the energy or enstrophy dissipation takes place) can be identified with the dimension correlation length scale, the square of which is interpreted, according to the concept of extensive chaos, as the area of a subsystem with one degree of freedom. Furthermore, these length scales can be identified with a “minimum length scale” of the flow, which is rigorously deduced from the concept of determining nodes.
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.
Resumo:
In decaying two-dimensional Navier-Stokes turbulence, Batchelor's similarity hypothesis fails due to the existence of coherent vortices. However, it is shown that decaying two-dimensional turbulence governed by the Harney-Hasegawa-Mima (CHM) equation ∂/∂t (V^2 φ-λ^2 φ)+J(φ,∇^2 φ)=D where D is a damping, is described well by Batchelor's similarity hypothesis for wave numbers k ≪ λ (the so-called AM regime). It is argued that CHM turbulence in the AM regime is a more `ideal' form of two-dimensional turbulence than is Navier-Stokes turbulence itself.
Resumo:
Atmospheric turbulence causes most weather-related aircraft incidents1. Commercial aircraft encounter moderate-or-greater turbulence tens of thousands of times each year worldwide, injuring probably hundreds of passengers (occasionally fatally), costing airlines tens of millions of dollars and causing structural damage to planes1, 2, 3. Clear-air turbulence is especially difficult to avoid, because it cannot be seen by pilots or detected by satellites or on-board radar4, 5. Clear-air turbulence is linked to atmospheric jet streams6, 7, which are projected to be strengthened by anthropogenic climate change8. However, the response of clear-air turbulence to projected climate change has not previously been studied. Here we show using climate model simulations that clear-air turbulence changes significantly within the transatlantic flight corridor when the concentration of carbon dioxide in the atmosphere is doubled. At cruise altitudes within 50–75° N and 10–60° W in winter, most clear-air turbulence measures show a 10–40% increase in the median strength of turbulence and a 40–170% increase in the frequency of occurrence of moderate-or-greater turbulence. Our results suggest that climate change will lead to bumpier transatlantic flights by the middle of this century. Journey times may lengthen and fuel consumption and emissions may increase. Aviation is partly responsible for changing the climate9, but our findings show for the first time how climate change could affect aviation.
Resumo:
The low wave number range of decaying turbulence governed by the Charney-Hasegawa-Mima (CHM) equation is examined theoretically and by direct numerical simulation. Here, the low wave number range is defined as values of the wave number k below the wave number kE corresponding to the peak of the energy spectrum, or alternatively the centroid wave number of the energy spectrum. The energy spectrum in the low wave number range in the infrared regime (k →0) is theoretically derived to be E(k) ∼k5, using a quasinormal Markovianized model of the CHM equation. This result is verified by direct numerical simulation of the CHM equation. The wave number triads (k,p,q) responsible for the formation of the low wave number spectrum are also examined. It is found that the energy flux Π(k) for k< kE can be entirely expressed by Π(-)(k), which is the total net input of energy to wave numbers
Resumo:
The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.
Resumo:
Faced with the strongly nonlinear and apparently random behaviour of the energy-containing scales in the atmosphere, geophysical fluid dynamicists have attempted to understand the synoptic-scale atmospheric flow within the context of two-dimensional homogeneous turbulence theory (e.g. FJØRTOFT [1]; LEITH [2]). However atmospheric observations (BOER and SHEPHERD [3] and Fig.1) show that the synoptic-scale transient flow evolves in the presence of a planetary-scale, quasi-stationary background flow which is approximately zonal (east-west). Classical homogeneous 2-D turbulence theory is therefore not strictly applicable to the transient flow. One is led instead to study 2-D turbulence in the presence of a large-scale (barotropically stable) zonal jet inhomogeneity.