44 resultados para Time-memory attacks
Resumo:
An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.
A dual QPSK soft-demapper for ECMA-368 exploiting time-domain spreading and guard interval diversity
Resumo:
When considering the relative fast processing speed and low power requirements for Wireless Personal Area Networks (WPAN) and Wireless Universal Serial Bus (USB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of UWB (ECMA-368) as the chosen physical implementation for high-rate Wireless USB.
Resumo:
When considering the relative fast processing speeds and low power requirements for Wireless Personal Area Networks (WPAN) including Wireless Universal Serial Bus (WUSB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of Ultra Wideband (UWB) (ECMA-368) as the chosen physical implementation for high-rate Wireless US8(1).
Resumo:
Time correlation functions yield profound information about the dynamics of a physical system and hence are frequently calculated in computer simulations. For systems whose dynamics span a wide range of time, currently used methods require significant computer time and memory. In this paper, we discuss the multiple-tau correlator method for the efficient calculation of accurate time correlation functions on the fly during computer simulations. The multiple-tau correlator is efficacious in terms of computational requirements and can be tuned to the desired level of accuracy. Further, we derive estimates for the error arising from the use of the multiple-tau correlator and extend it for use in the calculation of mean-square particle displacements and dynamic structure factors. The method described here, in hardware implementation, is routinely used in light scattering experiments but has not yet found widespread use in computer simulations.
Resumo:
Background: The cognitive bases of language impairment in specific language impairment (SLI) and autism spectrum disorders (ASD) were investigated in a novel non-word comparison task which manipulated phonological short-term memory (PSTM) and speech perception, both implicated in poor non-word repetition. Aims: This study aimed to investigate the contributions of PSTM and speech perception in non-word processing and whether individuals with SLI and ASD plus language impairment (ALI) show similar or different patterns of deficit in these cognitive processes. Method & Procedures: Three groups of adolescents (aged 14–17 years), 14 with SLI, 16 with ALI, and 17 age and non-verbal IQ matched typically developing (TD) controls, made speeded discriminations between non-word pairs. Stimuli varied in PSTM load (two- or four-syllables) and speech perception load (mismatches on a word-initial or word-medial segment). Outcomes & Results: Reaction times showed effects of both non-word length and mismatch position and these factors interacted: four-syllable and word-initial mismatch stimuli resulted in the slowest decisions. Individuals with language impairment showed the same pattern of performance as those with typical development in the reaction time data. A marginal interaction between group and item length was driven by the SLI and ALI groups being less accurate with long items than short ones, a difference not found in the TD group. Conclusions & Implications: Non-word discrimination suggests that there are similarities and differences between adolescents with SLI and ALI and their TD peers. Reaction times appear to be affected by increasing PSTM and speech perception loads in a similar way. However, there was some, albeit weaker, evidence that adolescents with SLI and ALI are less accurate than TD individuals, with both showing an effect of PSTM load. This may indicate, at some level, the processing substrate supporting both PSTM and speech perception is intact in adolescents with SLI and ALI, but also in both there may be impaired access to PSTM resources.
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.
Resumo:
The real-time parallel computation of histograms using an array of pipelined cells is proposed and prototyped in this paper with application to consumer imaging products. The array operates in two modes: histogram computation and histogram reading. The proposed parallel computation method does not use any memory blocks. The resulting histogram bins can be stored into an external memory block in a pipelined fashion for subsequent reading or streaming of the results. The array of cells can be tuned to accommodate the required data path width in a VLSI image processing engine as present in many imaging consumer devices. Synthesis of the architectures presented in this paper in FPGA are shown to compute the real-time histogram of images streamed at over 36 megapixels at 30 frames/s by processing in parallel 1, 2 or 4 pixels per clock cycle.
Resumo:
Free-standing monodomain liquid crystal elastomer samples are shown to have a complete memory of the orientational configuration at the time of cross-linking. This memory is demonstrated through samples in which the parent polymer system is first aligned in a magnetic field prior to cross-linking. These films show reversible nematic-isotropic phase transitions and x-ray scattering patterns characteristic of nematic phases. The liquid crystal elastomer films exhibit a remarkable memory effect, in that the sample may be held at temperatures well above the nematic-isotropic transition for extended periods ( > 2 weeks), but on cooling into the liquid crystal phase region, both the original director alignment and the degree of preferred orientation are recovered. It is demonstrated that these novel memory effects are equilibrium in nature. The origins of this phenomena in terms of coupling between the mesogenic side-chains and the polymer network are discussed.
Resumo:
The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Resumo:
We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems.
Resumo:
Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction.
Resumo:
Left inferior frontal gyrus (IFG) is a critical neural substrate for the resolution of proactive interference (PI) in working memory. We hypothesized that left IFG achieves this by controlling the influence of familiarity- versus recollection-based information about memory probes. Consistent with this idea, we observed evidence for an early (200 msec)-peaking signal corresponding to memory probe familiarity and a late (500 msec)-resolving signal corresponding to full accrual of trial-related contextual ("recollection-based") information. Next, we applied brief trains of repetitive transcranial magnetic stimulation (rTMS) time locked to these mnemonic signals, to left IFG and to a control region. Only early rTMS of left IFG produced a modulation of the false alarm rate for high-PI probes. Additionally, the magnitude of this effect was predicted by individual differences in susceptibility to PI. These results suggest that left IFG-based control may bias the influence of familiarity- and recollection-based signals on recognition decisions.
Resumo:
The goal of this research was to investigate the changes in neural processing in mild cognitive impairment. We measured phase synchrony, amplitudes, and event-related potentials in veridical and false memory to determine whether these differed in participants with mild cognitive impairment compared with typical, age-matched controls. Empirical mode decomposition phase locking analysis was used to assess synchrony, which is the first time this analysis technique has been applied in a complex cognitive task such as memory processing. The technique allowed assessment of changes in frontal and parietal cortex connectivity over time during a memory task, without a priori selection of frequency ranges, which has been shown previously to influence synchrony detection. Phase synchrony differed significantly in its timing and degree between participant groups in the theta and alpha frequency ranges. Timing differences suggested greater dependence on gist memory in the presence of mild cognitive impairment. The group with mild cognitive impairment had significantly more frontal theta phase locking than the controls in the absence of a significant behavioural difference in the task, providing new evidence for compensatory processing in the former group. Both groups showed greater frontal phase locking during false than true memory, suggesting increased searching when no actual memory trace was found. Significant inter-group differences in frontal alpha phase locking provided support for a role for lower and upper alpha oscillations in memory processing. Finally, fronto-parietal interaction was significantly reduced in the group with mild cognitive impairment, supporting the notion that mild cognitive impairment could represent an early stage in Alzheimer’s disease, which has been described as a ‘disconnection syndrome’.
Resumo:
The detection of long-range dependence in time series analysis is an important task to which this paper contributes by showing that whilst the theoretical definition of a long-memory (or long-range dependent) process is based on the autocorrelation function, it is not possible for long memory to be identified using the sum of the sample autocorrelations, as usually defined. The reason for this is that the sample sum is a predetermined constant for any stationary time series; a result that is independent of the sample size. Diagnostic or estimation procedures, such as those in the frequency domain, that embed this sum are equally open to this criticism. We develop this result in the context of long memory, extending it to the implications for the spectral density function and the variance of partial sums of a stationary stochastic process. The results are further extended to higher order sample autocorrelations and the bispectral density. The corresponding result is that the sum of the third order sample (auto) bicorrelations at lags h,k≥1, is also a predetermined constant, different from that in the second order case, for any stationary time series of arbitrary length.
Resumo:
Money’s ability to enhance memory has received increased attention in recent research. However, previous studies have not directly addressed the time-dependent nature of monetary effects on memory, which are suggested to exist by research in cognitive neuroscience, and the possible detrimental effects of monetary rewards on learning interesting material, as indicated by studies in motivational psychology. By utilizing a trivia question paradigm, the current study incorporated these perspectives and examined the effect of monetary rewards on immediate and delayed memory performance for answers to uninteresting and interesting questions. Results showed that monetary rewards promote memory performance only after a delay. In addition, the memory enhancement effect of monetary rewards was only observed for uninteresting questions. These results are consistent with both the hippocampus-dependent memory consolidation model of reward learning and previous findings documenting the ineffectiveness of monetary rewards on tasks that have intrinsic value.