35 resultados para Routing
Resumo:
This paper introduces a new variant of the popular n-dimensional hypercube network Q(n), known as the n-dimensional locally twisted cube LTQ(n), which has the same number of nodes and the same number of connections per node as Q(n). Furthermore. LTQ(n) is similar to Q(n) in the sense that the nodes can be one-to-one labeled with 0-1 binary sequences of length n. so that the labels of any two adjacent nodes differ in at most two successive bits. One advantage of LTQ(n) is that the diameter is only about half of the diameter of Q(n) We develop a simple routing algorithm for LTQ(n), which creates a shortest path from the source to the destination in O(n) time. We find that LTQ(n) consists of two disjoint copies of Q(n) by adding a matching between their nodes. On this basis. we show that LTQ(n) has a connectivity of n.
Resumo:
A processing system comprises a plurality of processors (12) and communication means (20) arranged to carry messages between the processors, wherein each of the processors (12) has an operating instruction memory field (32, 34, 36) arranged to hold stored operating instructions including a re-routing target address. Each processor is arranged to receive a message (38) including operating instructions including a target address. On receipt of the message, each processor is arranged to: check the target address in the message to determine whether it corresponds to an address associated with the processor; if the target address in the message does correspond to an address associated with the processor, to check the operating instructions in the message to determine whether the message is to be re-routed; and, if the message is to be re-routed, to replace operating instructions within the message with the stored operating instructions, and place the message on the communication means for delivery to the re-routing target address.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is -hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.
Resumo:
Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.
Resumo:
This paper proposes a practical approach to the enhancement of Quality of Service (QoS) routing by means of providing alternative or repair paths in the event of a breakage of a working path. The proposed scheme guarantees that every Protected Node (PN) is connected to a multi-repair path such that no further failure or breakage of single or double repair paths can cause any simultaneous loss of connectivity between an ingress node and an egress node. Links to be protected in an MPLS network are predefined and a Label Switched path (LSP) request involves the establishment of a working path. The use of multi-protection paths permits the formation of numerous protection paths allowing greater flexibility. Our analysis examined several methods including single, double and multi-repair routes and the prioritization of signals along the protected paths to improve the Quality of Service (QoS), throughput, reduce the cost of the protection path placement, delay, congestion and collision. Results obtained indicated that creating multi-repair paths and prioritizing packets reduces delay and increases throughput in which case the delays at the ingress/egress LSPs were low compared to when the signals had not been classified. Therefore the proposed scheme provided a means to improve the QoS in path restoration in MPLS using available network resources. Prioritizing the packets in the data plane has revealed that the amount of traffic transmitted using a medium and low priority Label Switch Paths (LSPs) does not have any impact on the explicit rate of the high priority LSP in which case the problem of a knock-on effect is eliminated.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an important technique to improve home network performance including energy consumption, lifetime and end-to-end delay. Also, it can largely mitigate the hot spots near the sink node. The selection of optimal moving trajectory for sink node(s) is an NP-hard problem jointly optimizing routing algorithms with the mobile sink moving strategy is a significant and challenging research issue. The influence of multiple static sink nodes on energy consumption under different scale networks is first studied and an Energy-efficient Multi-sink Clustering Algorithm (EMCA) is proposed and tested. Then, the influence of mobile sink velocity, position and number on network performance is studied and a Mobile-sink based Energy-efficient Clustering Algorithm (MECA) is proposed. Simulation results validate the performance of the proposed two algorithms which can be deployed in a consumer home network environment.
Resumo:
Hybrid multiprocessor architectures which combine re-configurable computing and multiprocessors on a chip are being proposed to transcend the performance of standard multi-core parallel systems. Both fine-grained and coarse-grained parallel algorithm implementations are feasible in such hybrid frameworks. A compositional strategy for designing fine-grained multi-phase regular processor arrays to target hybrid architectures is presented in this paper. The method is based on deriving component designs using classical regular array techniques and composing the components into a unified global design. Effective designs with phase-changes and data routing at run-time are characteristics of these designs. In order to describe the data transfer between phases, the concept of communication domain is introduced so that the producer–consumer relationship arising from multi-phase computation can be treated in a unified way as a data routing phase. This technique is applied to derive new designs of multi-phase regular arrays with different dataflow between phases of computation.
Resumo:
[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.
Resumo:
Runoff fields over northern Africa (10–25°N, 20°W–30°E) derived from 17 atmospheric general circulation models driven by identical 6 ka BP orbital forcing, sea surface temperatures, and CO2 concentration have been analyzed using a hydrological routing scheme (HYDRA) to simulate changes in lake area. The AGCM-simulated runoff produced six-fold differences in simulated lake area between models, although even the largest simulated changes considerably underestimate the observed changes in lake area during the mid-Holocene. The inter-model differences in simulated lake area are largely due to differences in simulated runoff (the squared correlation coefficient, R2, is 0.84). Most of these differences can be attributed to differences in the simulated precipitation (R2=0.83). The higher correlation between runoff and simulated lake area (R2=0.92) implies that simulated differences in evaporation have a contributory effect. When runoff is calculated using an offline land-surface scheme (BIOME3), the correlation between runoff and simulated lake area is (R2=0.94). Finally, the spatial distribution of simulated precipitation can exert an important control on the overall response.
Resumo:
Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework.
Resumo:
Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.