30 resultados para R1 - General Regional Economics
Resumo:
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
The general focus of this paper is the regional estimation of marginal benefits of targeted water pollution abatement to instream uses. Benefit estimates are derived from actual consumer choices of recreational fishing activities and the implied expenditures for various levels of water quality. The methodology is applied to measuring the benefits accruing to recreational anglers in Indiana from the abatement of pollutants that are by-products of agricultural crop production.
Resumo:
The response of East Asian Summer Monsoon (EASM) precipitation to long term changes in regional anthropogenic aerosols (sulphate and black carbon) is explored in an atmospheric general circulation model, the atmospheric component of the UK High-Resolution Global Environment Model v1.2 (HiGAM). Separately, sulphur dioxide (SO2) and black carbon (BC) emissions in 1950 and 2000 over East Asia are used to drive model simulations, while emissions are kept constant at year 2000 level outside this region. The response of the EASM is examined by comparing simulations driven by aerosol emissions representative of 1950 and 2000. The aerosol radiative effects are also determined using an off-line radiative transfer model. During June, July and August, the EASM was not significantly changed as either SO2 or BC emissions increased from 1950 to 2000 levels. However, in September, precipitation is significantly decreased by 26.4% for sulphate aerosol and 14.6% for black carbon when emissions are at the 2000 level. Over 80% of the decrease is attributed to changes in convective precipitation. The cooler land surface temperature over China in September (0.8 °C for sulphate and 0.5 °C for black carbon) due to increased aerosols reduces the surface thermal contrast that supports the EASM circulation. However, mechanisms causing the surface temperature decrease in September are different between sulphate and BC experiments. In the sulphate experiment, the sulphate direct and the 1st indirect radiative effects contribute to the surface cooling. In the BC experiment, the BC direct effect is the main driver of the surface cooling, however, a decrease in low cloud cover due to the increased heating by BC absorption partially counteracts the direct effect. This results in a weaker land surface temperature response to BC changes than to sulphate changes. The resulting precipitation response is also weaker, and the responses of the monsoon circulation are different for sulphate and black carbon experiments. This study demonstrates a mechanism that links regional aerosol emission changes to the precipitation changes of the EASM, and it could be applied to help understand the future changes in EASM precipitation in CMIP5 simulations.
Resumo:
This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.
Resumo:
This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.
Resumo:
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.
Resumo:
This paper uses a recently developed nonlinear Granger causality test to determine whether linear orthogonalization really does remove general stock market influences on real estate returns to leave pure industry effects in the latter. The results suggest that there is no nonlinear relationship between the US equity-based property index returns and returns on a general stock market index, although there is evidence of nonlinear causality for the corresponding UK series.
Resumo:
A number of recent papers have employed the BDS test as a general test for mis-specification for linear and nonlinear models. We show that for a particular class of conditionally heteroscedastic models, the BDS test is unable to detect a common mis-specification. Our results also demonstrate that specific rather than portmanteau diagnostics are required to detect neglected asymmetry in volatility. However for both classes of tests reasonable power is only obtained using very large sample sizes.
Resumo:
This paper evaluates environmental externality when the structure of the externality is cumulative. The evaluation exercise is based on the assumption that the agents in question form conjectural variations. A number of environments are encompassed within this classification and have received due attention in the literature. Each of these heterogeneous environments, however, possesses considerable analytical homogeneity and permit subscription to a general model treatment. These environments include environmental externality, oligopoly and the analysis of the private provision of public goods. We highlight the general analytical approach by focusing on this latter context, in which debate centers around four issues: the existence of free-riding, the extent to which contributions are matched equally across individuals, the nature of conjectures consistent with equilibrium, and the allocative inefficiency of alternative regimes. This paper resolves each of these issues, with the following conclusions: A consistent-conjectures equilibrium exists in the private provision of public goods. It is the monopolistic-conjectures equilibrium. Agents act identically, contributing positive amounts of the public good in an efficient allocation of resources. There is complete matching of contributions among agents, no free-riding, and the allocation is independent of the number of members within the community. Thus the Olson conjecture—that inefficiency is exacerbated by community size—has no foundation in a consistent-conjectures, cumulative-externality, context (212 words).
Resumo:
This paper addresses the economics of Enhanced Landfill Mining (ELFM) both from a private point of view as well as from a society perspective. The private potential is assessed using a case study for which an investment model is developed to identify the impact of a broad range of parameters on the profitability of ELFM. We found that especially variations in Waste-to-Energy (WtE efficiency, electricity price, CO2-price, WtE investment and operational costs) and ELFM support explain the variation in economic profitability measured by the Internal Rate of Return. To overcome site-specific parameters we also evaluated the regional ELFM potential for the densely populated and industrial region of Flanders (north of Belgium). The total number of potential ELFM sites was estimated using a 5-step procedure and a simulation tool was developed to trade-off private costs and benefits. The analysis shows that there is a substantial economic potential for ELFM projects on the wider regional level. Furthermore, this paper also reviews the costs and benefits from a broader perspective. The carbon footprint of the case study was mapped in order to assess the project’s net impact in terms of greenhouse gas emissions. Also the impacts of nature restoration, soil remediation, resource scarcity and reduced import dependence were valued so that they can be used in future social cost-benefit analysis. Given the complex trade-off between economic, social and environmental issues of ELFM projects, we conclude that further refinement of the methodological framework and the development of the integrated decision tools supporting private and public actors, are necessary.
Resumo:
Predictions of twenty-first century sea level change show strong regional variation. Regional sea level change observed by satellite altimetry since 1993 is also not spatially homogenous. By comparison with historical and pre-industrial control simulations using the atmosphere–ocean general circulation models (AOGCMs) of the CMIP5 project, we conclude that the observed pattern is generally dominated by unforced (internal generated) variability, although some regions, especially in the Southern Ocean, may already show an externally forced response. Simulated unforced variability cannot explain the observed trends in the tropical Pacific, but we suggest that this is due to inadequate simulation of variability by CMIP5 AOGCMs, rather than evidence of anthropogenic change. We apply the method of pattern scaling to projections of sea level change and show that it gives accurate estimates of future local sea level change in response to anthropogenic forcing as simulated by the AOGCMs under RCP scenarios, implying that the pattern will remain stable in future decades. We note, however, that use of a single integration to evaluate the performance of the pattern-scaling method tends to exaggerate its accuracy. We find that ocean volume mean temperature is generally a better predictor than global mean surface temperature of the magnitude of sea level change, and that the pattern is very similar under the different RCPs for a given model. We determine that the forced signal will be detectable above the noise of unforced internal variability within the next decade globally and may already be detectable in the tropical Atlantic.
Resumo:
In this paper we determine whether speculative bubbles in one region in the United States can lead bubbles to form in others. We first apply a regime-switching model to determine whether speculative bubbles existed in the U.S. regional residential real estate markets. Our findings suggest that the housing markets in five of the nine census divisions investigated were characterized by speculative bubbles. We then examine the extent to which bubbles spill over between neighboring and more distant regions, finding that the transmission of speculative bubbles and nonfundamentals between regions is multidirectional and does not depend on contiguity or distance
Resumo:
This paper provides an overview of the main insights arising from the ‘regional strategy’ literature. It also develops the contours of a new, rich research agenda for future international strategy scholarship, whereby the region should be introduced as an explicit, third geographic level of analysis, in addition to the country-level and the global level. Regional strategy analysis requires a fundamental rethink of mainstream theories in the international strategy sphere. This rethink involves, inter alia, internalization theory, with its resource-based view and transaction cost economics components, as well as the integration (I) – national responsiveness (NR) framework.