32 resultados para N-(tert-Butylsulfinyl)Imines
Resumo:
The aza-Darzens ('ADZ') reactions of N-diphenylphosphinyl ('N-Dpp') imines with chiral enolates derived from N-bromoacetyl 2S-2,10-camphorsultam proceed in generally good yield to give N-diphenylphosphinyl aziridinoyl sultams. However, the stereoselectivity of the reaction is dependent upon the structure of the imine substituent: when the chiral enolate was reacted with arylimines substituted in the ortho-position, mixtures of cis- and trans-2'R,3'R-aziridines were obtained, often with a complete selectivity in favour of the trans-isomer. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
There has been limited development in catalyst carriers for magnetic separations where superparamagnetic nanoparticles of a high saturation magnetization with no coercivity are required to isolate expensive catalyst reagent that are subjected to repeated magnetic cycles. By using simple stepwise layer-by-layer nanochemistry techniques, we show that an fee FePt nanomagnet can be created inside each silica particle with tailored dimensions to great precision. Subsequent engineering of the external surface with Ti-O-Si species in an optimum structure to create a unique interface gives high activity and excellent selectivity of the composite material for the trans-stilbene oxidation to the corresponding epoxide in the presence of tert-butyl hydroperoxide. Thus, a new magnetic separable epoxidation catalyst is described. This work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design, which could lead to new catalytic. properties.
Resumo:
From the reaction of tert-butyl lithium or n-butyl lithium with N-methylpyrrole (1a), furan (1b) or 2-bromo-thiophen (1c), 2-N-methylpyrrolyl lithium (2a), 2-furyl lithium (2b) or 2-thiophenyl lithium (2c), respectively, was obtained. When reacted with 6-(2-N-methylpyrrolyl) fulvene (3a), 6-(2-furyl) fulvene (3b) or 6-(2-thiophenyl) fulvene (3c), the corresponding lithiated intermediates were formed (4a-c). Titanocenes (5a-c) were obtained through transmetallation with titanium tetrachloride. When these titanocenes were tested against pig kidney epithelial (LLC-PK) cells, inhibitory concentrations (IC50) of 32 mu M, 140 mu M, and 240 mu M, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, compared to their ansa-analogues. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
From the reaction of tert-butyl lithium with p-bromo-N,N-dimethylaniline (1a), p-bromoanisole (1b) or 1-bromo-3,5-dimethoxybenzene (1c), p-N,N-dimethylanityl lithium (2a), p-anisyl lithium (2b) or (3,5-dimethoxyphenyl) lithium (2c), respectively, were obtained. When reacted with 6-(p-N,N-dimethylanilinyl)fulvene (3a), 6-(p-methoxyphenyl)fulvene (3b) or 3,5-(dimethoxyphenyl)fulvene (3c), the corresponding lithiated intermediates were formed (4a-c). Titanium tetrachloride was added "in situ", obtaining titanocenes 5a-C, respectively. When these titanocenes were tested against pig kidney carcinoma (LLC-PK) cells, inhibitory concentrations (IC50) Of 3.8 x 10(-5) M, 4.5 x 10(-5) M, and 7.8 x 10(-5) M, respectively, were observed. These values represent improved cytotoxicity against LLC-PK, compared to their ansa-analogues. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Flavonoids are plant-derived polyphenolic compounds with neuroprotective properties. Recent work suggests that, in addition to acting as hydrogen donors, they activate protective signalling pathways. The anti-oxidant response element (ARE) promotes the expression of protective proteins including those required for glutathione synthesis (xCT cystine antiporter, gamma-glutamylcysteine synthetase and glutathione synthase). The use of a luciferase reporter (ARE-luc) assay showed that the dietary flavan-3-ol (-)epicatechin activates this pathway in primary cortical astrocytes but not neurones. We also examined the distribution of NF-E2-related factor-2 (Nrf2), a key transcription factor in ARE-mediated gene expression. We found, using immunocytochemistry, that Nrf2 accumulated in the nuclei of astrocytes following exposure to tert-butylhydroquinone (100 mu M) and (-)epicatechin (100 nM). (-)Epicatechin signalling via Nrf2 was inhibited by wortmannin implicating a phosphatidylinositol 3-kinase-dependent pathway. Finally, (-)epicatechin increased glutathione levels in astrocytes consistent with an up-regulation of ARE-mediated gene expression. Together, this suggests that flavonoids may be cytoprotective by increasing anti-oxidant gene expression.
Resumo:
The self-assembly and hydrogelation properties of two Fmoc-tripeptides [Fmoc = N-(fluorenyl-9-methoxycarbonyl)] are investigated, in borate buffer and other basic solutions. A remarkable difference in self-assembly properties is observed comparing Fmoc-VLK(Boc) with Fmoc-K(Boc)LV, both containing K protected by N(epsilon)-tert-butyloxycarbonate (Boc). In borate buffer, the former peptide forms highly anisotropic fibrils which show local alignment, and the hydrogels show flow-aligning properties. In contrast, Fmoc-K(Boc)LV forms highly branched fibrils that produce isotropic hydrogels with a much higher modulus (G' > 10(4) Pa), and lower concentration for hydrogel formation. The distinct self-assembled structures are ascribed to conformational differences, as revealed by secondary structure probes (CD, FTIR, Raman spectroscopy) and X-ray diffraction. Fmoc-VLK(Boc) forms well-defined beta-sheets with a cross-beta X-ray diffraction pattern, whereas Fmoc-KLV(Boc) forms unoriented assemblies with multiple stacked sheets. Interchange of the K and V residues when inverting the tripeptide sequence thus leads to substantial differences in self-assembled structures, suggesting a promising approach to control hydrogel properties.
Resumo:
The new square-planar Ni-II-N2O2 complex [Ni(L-Me)] (1(Me)), where L-Me, stands for the dianionic phenolato form of N,N'bis(3,5-di-tert-butyl-salicylidene)-4,5-dimethyl-1,2-phenyl- enediamine ((LH2)-L-Me), has been synthesised and fully characterised. X-ray crystallography was also used for the characterisation. The electrochemical one-electron oxidation of 1(Me) produces the thermally stable (within the temperature range 10-295 K) cationic species (1(Me))(+). The UV/Vis and X-band EPR experimental data, supported by DFT calculations, indicate that (1(Me))(+), is best described as a Ni-II monoradical complex and, thus, does NOT exist in a Ni-III ground state, in contrast to its demethylated counterpart [Ni(L-H)](+) (1(H))(+) below 170 K.
Resumo:
Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.
Resumo:
The regio- and stereoselective photoinduced addition of N-carbomethoxymethylpyrrolidine to 5(S)-tert-butyldimethylsiloxymethyl-furan-2(5H)-one in the presence of benzophenone yields 3(R)-[N-(diphenylhydroxymethyl)carbo methoxymethylpyrrolidin-2′-yl]-4(S)-tert-butyldimethylsiloxymethyl)-butan-4-olides (epimeric at C-2′), and we report the X-ray structure of the major adduct together with its conversion into the 1-azabicyclo[4.3.0]-nonane ring system.
Resumo:
The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K) – Akt signalling pathways retains FoxO3a in the cytoplasm thereby inhibiting the transcriptional activation of death promoting genes. We hypothesised that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localisation of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and upregulated Fas ligand expression. In contrast the phenolic antioxidant tBHQ caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a prevented NMDA-induced upregulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Resumo:
A diphenoxido-bridged dinuclear copper(II) complex, [Cu2L2(ClO4)(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)-ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu2L2(OH)]ClO4 (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu center dot center dot center dot Cu distance from 3.018 angstrom (avg.) to 2.798 angstrom (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution.
Resumo:
Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
Predominantly (E)-N-diphenylphosphinyl vinyl aziridines are prepared by a reaction of N-diphenylphosphinyl imines with α-bromoallyllithium in the presence of freshly fused ZnCl2. These aziridines undergo a ring-opening reaction with a variety of carbon and heteronucleophiles, in good yield, and generally with good regioselectivity.