70 resultados para Multi-objective evolutionary particle swarm optimization
Resumo:
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.
Resumo:
In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Resumo:
Flocking is the capacity of coherent movement between multiple animals, including birds. Prominent research into flocking is presented. Particle Swarm Optimisation (PSO) has been the prominent result from research into flocking. It is considered that opportunities for further research in flocking exist. With the potential for automated traffic systems, it is concluded that flocking should be reinvestigated for this purpose.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.
Resumo:
This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.
Resumo:
We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
Background and Objective: Dispensing medicines into compliance aids is a common practice in pharmacy contrary to manufacturers’ advice and studies have shown the appearance of light-sensitive tablets is compromised by such storage; we previously found evidence of reduced bioavailability at elevated temperature and humidity. Our objective was to examine the physicochemical stability of two generic atenolol tablets in different compliance aids and with aspirin co-storage at room temperature and at 40 °C/75% relative humidity. Methods: The physicochemical stability of atenolol tablets was evaluated after 28 days of storage and compared with controls by examining visual appearance, weight, disintegration, dissolution, friability and hardness to accepted standards and using a previously validated HPLC method for chemical assay. Results and Discussion: The response to storage was brand-dependent and not straightforward. With one make of atenolol (Alpharma), storage in compliance aids even at room temperature impacted on physical stability, reducing tablet hardness, with storage in Dosett® exerting a greater impact than storage in Medidos® (t-test P < 0·001). Co-storage at elevated temperature and humidity also impacted on the appearance of non-coated aspirin tablets (Angette™). The chemical stability of atenolol was not affected and we did not find evidence of changes to bioavailability with either make. Certainly data for one atenolol make (CP Pharmaceuticals) co-stored with aspirin (Angette™ and Nu-Seals) in both compliance aids at room temperature provided evidence of short-term stability. But medicines are dispensed into compliance aids in multi-factorial ways so our study highlights not only the lack of evidence but also a realization that evidence to support real practice may not be accomplished through research. Conclusion: Reassuring practitioners of the continued stability of medicines in compliance aids under the countless condition in which they are dispensed in practice may requires a different approach involving medical device regulators and more definitive professional guidance.