27 resultados para Low-Power Image Sensors
A dual QPSK soft-demapper for ECMA-368 exploiting time-domain spreading and guard interval diversity
Resumo:
When considering the relative fast processing speed and low power requirements for Wireless Personal Area Networks (WPAN) and Wireless Universal Serial Bus (USB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of UWB (ECMA-368) as the chosen physical implementation for high-rate Wireless USB.
Resumo:
This paper addresses the impact of imperfect synchronisation on D-STBC when combined with incremental relay. To suppress such an impact, a novel detection scheme is proposed, which retains the two key features of the STBC principle: simplicity (i.e. linear computational complexity), and optimality (i.e. maximum likelihood). These two features make the new detector very suitable for low power wireless networks (e.g. sensor networks).
Resumo:
As consumers demand more functionality) from their electronic devices and manufacturers supply the demand then electrical power and clock requirements tend to increase, however reassessing system architecture can fortunately lead to suitable counter reductions. To maintain low clock rates and therefore reduce electrical power, this paper presents a parallel convolutional coder for the transmit side in many wireless consumer devices. The coder accepts a parallel data input and directly computes punctured convolutional codes without the need for a separate puncturing operation while the coded bits are available at the output of the coder in a parallel fashion. Also as the computation is in parallel then the coder can be clocked at 7 times slower than the conventional shift-register based convolutional coder (using DVB 7/8 rate). The presented coder is directly relevant to the design of modern low-power consumer devices
Resumo:
When considering the relative fast processing speeds and low power requirements for Wireless Personal Area Networks (WPAN) including Wireless Universal Serial Bus (WUSB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of Ultra Wideband (UWB) (ECMA-368) as the chosen physical implementation for high-rate Wireless US8(1).
Resumo:
Epidemiological evidence suggests that polyphenols may, in part, explain the cardioprotective properties of fruits. This review aims to summarise the evidence for the effects of fruit polyphenols on four risk factors of CVD: platelet function, blood pressure, vascular function and blood lipids. This review includes human dietary intervention studies investigating fruits and their polyphenols. There was some evidence to suggest that fruits containing relatively high concentrations of flavonols, anthocyanins and procyanindins, such as pomegranate, purple grapes and berries, were effective at reducing CVD risk factors, particularly with respect to anti-hypertensive effects, inhibition of platelet aggregation and increasing endothelial-dependent vasodilation than other fruits investigated. Flavanone-rich fruits, such as oranges and grapefruits, were reported to have hypocholesterolaemic effects, with little impact on other risk factors being examined. However, the evidence was limited, inconsistent and often inconclusive. This is in part due to the heterogeneity in the design of studies, the lack of controls, the relatively short intervention periods and low power in several studies. Details of the polyphenol content of the fruits investigated were also omitted in some studies, negating comparison of data. It is recommended that large, well-powered, long-term human dietary intervention studies investigating a wider range of fruits are required to confirm these observations. Investigations into the potential synergistic effects of polyphenols on a combination of CVD risk markers, dose–response relationships and standardisation in methodology would facilitate the comparison of studies and also provide valuable information on the types of fruits which could confer protection against CVD.
Resumo:
Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B’s event rate was found to vary with incoming particle acceptance angle. Simultaneous colocated comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.
Resumo:
We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.
Resumo:
A parallel pipelined array of cells suitable for real-time computation of histograms is proposed. The cell architecture builds on previous work obtained via C-slow retiming techniques and can be clocked at 65 percent faster frequency than previous arrays. The new arrays can be exploited for higher throughput particularly when dual data rate sampling techniques are used to operate on single streams of data from image sensors. In this way, the new cell operates on a p-bit data bus which is more convenient for interfacing to camera sensors or to microprocessors in consumer digital cameras.
Resumo:
This paper employs an extensive Monte Carlo study to test the size and power of the BDS and close return methods of testing for departures from independent and identical distribution. It is found that the finite sample properties of the BDS test are far superior and that the close return method cannot be recommended as a model diagnostic. Neither test can be reliably used for very small samples, while the close return test has low power even at large sample sizes
Resumo:
A disposable backscatter instrument is described for optical detection of cloud in the atmosphere from a balloon-carried platform. It uses an ultra-bright light emitting diode (LED) illumination source with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. The response is interpreted in terms of the equivalent visual range within the cloud. The device is lightweight (150 g) and low power (∼30 mA), for use alongside a conventional meteorological radiosonde.
Resumo:
The propagation of 7.335 MHz, c.w. signals over a 5212 km sub-auroral, west-east path is studied. Measurements and semi-empirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with one produced by a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The signals are found to suffer exceptionally low losses at certain local times under geomagnetically quiet conditions. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low Kp values. A sharp cut-off in low-power losses at a mean Kp of 2.75 strongly implicates the trough in the propagation of these signals. The Doppler shifts observed at these times cannot be explained by a simple ray-tracing model. It is shown however, that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
Resumo:
Wireless Sensor Networks (WSNs) have been an exciting topic in recent years. The services offered by a WSN can be classified into three major categories: monitoring, alerting, and information on demand. WSNs have been used for a variety of applications related to the environment (agriculture, water and forest fire detection), the military, buildings, health (elderly people and home monitoring), disaster relief, and area or industrial monitoring. In most WSNs tasks like processing the sensed data, making decisions and generating emergency messages are carried out by a remote server, hence the need for efficient means of transferring data across the network. Because of the range of applications and types of WSN there is a need for different kinds of MAC and routing protocols in order to guarantee delivery of data from the source nodes to the server (or sink). In order to minimize energy consumption and increase performance in areas such as reliability of data delivery, extensive research has been conducted and documented in the literature on designing energy efficient protocols for each individual layer. The most common way to conserve energy in WSNs involves using the MAC layer to put the transceiver and the processor of the sensor node into a low power, sleep state when they are not being used. Hence the energy wasted due to collisions, overhearing and idle listening is reduced. As a result of this strategy for saving energy, the routing protocols need new solutions that take into account the sleep state of some nodes, and which also enable the lifetime of the entire network to be increased by distributing energy usage between nodes over time. This could mean that a combined MAC and routing protocol could significantly improve WSNs because the interaction between the MAC and network layers lets nodes be active at the same time in order to deal with data transmission. In the research presented in this thesis, a cross-layer protocol based on MAC and routing protocols was designed in order to improve the capability of WSNs for a range of different applications. Simulation results, based on a range of realistic scenarios, show that these new protocols improve WSNs by reducing their energy consumption as well as enabling them to support mobile nodes, where necessary. A number of conference and journal papers have been published to disseminate these results for a range of applications.