36 resultados para Geographic information systems -- Data processing
Resumo:
Information modelling is a topic that has been researched a great deal, but still many questions around it have not been solved. An information model is essential in the design of a database which is the core of an information system. Currently most of databases only deal with information that represents facts, or asserted information. The ability of capturing semantic aspect has to be improved, and yet other types, such as temporal and intentional information, should be considered. Semantic Analysis, a method of information modelling, has offered a way to handle various aspects of information. It employs the domain knowledge and communication acts as sources of information modelling. It lends itself to a uniform structure whereby semantic, temporal and intentional information can be captured, which builds a sound foundation for building a semantic temporal database.
Information systems requirements in support of the firm's portfolio of knowledge-driven capabilities
Resumo:
The three decades of on-going executives’ concerns of how to achieve successful alignment between business and information technology shows the complexity of such a vital process. Most of the challenges of alignment are related to knowledge and organisational change and several researchers have introduced a number of mechanisms to address some of these challenges. However, these mechanisms pay less attention to multi-level effects, which results in a limited un-derstanding of alignment across levels. Therefore, we reviewed these challenges from a multi-level learning perspective and found that business and IT alignment is related to the balance of exploitation and exploration strategies with the intellec-tual content of individual, group and organisational levels.
Resumo:
Ensemble-based data assimilation is rapidly proving itself as a computationally-efficient and skilful assimilation method for numerical weather prediction, which can provide a viable alternative to more established variational assimilation techniques. However, a fundamental shortcoming of ensemble techniques is that the resulting analysis increments can only span a limited subspace of the state space, whose dimension is less than the ensemble size. This limits the amount of observational information that can effectively constrain the analysis. In this paper, a data selection strategy that aims to assimilate only the observational components that matter most and that can be used with both stochastic and deterministic ensemble filters is presented. This avoids unnecessary computations, reduces round-off errors and minimizes the risk of importing observation bias in the analysis. When an ensemble-based assimilation technique is used to assimilate high-density observations, the data-selection procedure allows the use of larger localization domains that may lead to a more balanced analysis. Results from the use of this data selection technique with a two-dimensional linear and a nonlinear advection model using both in situ and remote sounding observations are discussed.