60 resultados para Computer Imaging, Vision, Pattern Recognition and Graphics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case series compares patient experiences and therapeutic processes between two modalities of cognitive behaviour therapy (CBT) for depression: computerized CBT (cCBT) and therapist-delivered CBT (tCBT). In a mixed-methods repeated-measures case series, six participants were offered cCBT and tCBT in sequence, with the order of delivery randomized across participants. Questionnaires about patient experiences were administered after each session and a semi-structured interview was completed with each participant at the end of each therapy modality. Therapy expectations, patient experiences and session impact ratings in this study generally favoured tCBT. Participants typically experienced cCBT sessions as less meaningful, less positive and less helpful compared to tCBT sessions in terms of developing understanding, facilitating problem-solving and building a therapeutic relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teaching in universities has increased in importance in recent years which, in part, is a consequence of the change in funding of universities from block grants to student tuition fees. Various initiatives have been made which serve to raise the profile of teaching and give it greater recognition. It is also important that teaching is recognised even more fully and widely, and crucially that it is rewarded accordingly. We propose a mechanism for recognising and rewarding university teaching that is based on a review process that is supported by documented evidence whose outcomes can be fed into performance and development reviews, and used to inform decisions about reward and promotion, as well as the review of probationary status where appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that hyper-systemizing predisposes individuals to show talent, and review evidence that hyper-systemizing is part of the cognitive style of people with autism spectrum conditions (ASC). We then clarify the hyper-systemizing theory, contrasting it to the weak central coherence (WCC) and executive dysfunction (ED) theories. The ED theory has difficulty explaining the existence of talent in ASC. While both hyper-systemizing and WCC theories postulate excellent attention to detail, by itself excellent attention to detail will not produce talent. By contrast, the hyper-systemizing theory argues that the excellent attention to detail is directed towards detecting 'if p, then q' rules (or [input-operation-output] reasoning). Such law-based pattern recognition systems can produce talent in systemizable domains. Finally, we argue that the excellent attention to detail in ASC is itself a consequence of sensory hypersensitivity. We review an experiment from our laboratory demonstrating sensory hypersensitivity detection thresholds in vision. We conclude that the origins of the association between autism and talent begin at the sensory level, include excellent attention to detail and end with hyper-systemizing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typically, algorithms for generating stereo disparity maps have been developed to minimise the energy equation of a single image. This paper proposes a method for implementing cross validation in a belief propagation optimisation. When tested using the Middlebury online stereo evaluation, the cross validation improves upon the results of standard belief propagation. Furthermore, it has been shown that regions of homogeneous colour within the images can be used for enforcing the so-called "Segment Constraint". Developing from this, Segment Support is introduced to boost belief between pixels of the same image region and improve propagation into textureless regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address issues in segmentation Of remotely sensed LIDAR (LIght Detection And Ranging) data. The LIDAR data, which were captured by airborne laser scanner, contain 2.5 dimensional (2.5D) terrain surface height information, e.g. houses, vegetation, flat field, river, basin, etc. Our aim in this paper is to segment ground (flat field)from non-ground (houses and high vegetation) in hilly urban areas. By projecting the 2.5D data onto a surface, we obtain a texture map as a grey-level image. Based on the image, Gabor wavelet filters are applied to generate Gabor wavelet features. These features are then grouped into various windows. Among these windows, a combination of their first and second order of statistics is used as a measure to determine the surface properties. The test results have shown that ground areas can successfully be segmented from LIDAR data. Most buildings and high vegetation can be detected. In addition, Gabor wavelet transform can partially remove hill or slope effects in the original data by tuning Gabor parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new face verification algorithm based on Gabor wavelets and AdaBoost. In the algorithm, faces are represented by Gabor wavelet features generated by Gabor wavelet transform. Gabor wavelets with 5 scales and 8 orientations are chosen to form a family of Gabor wavelets. By convolving face images with these 40 Gabor wavelets, the original images are transformed into magnitude response images of Gabor wavelet features. The AdaBoost algorithm selects a small set of significant features from the pool of the Gabor wavelet features. Each feature is the basis for a weak classifier which is trained with face images taken from the XM2VTS database. The feature with the lowest classification error is selected in each iteration of the AdaBoost operation. We also address issues regarding computational costs in feature selection with AdaBoost. A support vector machine (SVM) is trained with examples of 20 features, and the results have shown a low false positive rate and a low classification error rate in face verification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.