24 resultados para Auto Shredder Residue (ASR)
Resumo:
The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.
Resumo:
A novel combination of site-specific isotope labelling, polarised infrared spectroscopy and molecular combing reveal local orientational ordering in the fibril-forming peptide YTIAALLSPYSGGRADS. Use of 13C-18O labelled alanine residues demonstrates that the Nterminal end of the peptide is incorporated into the cross-beta structure, while the C-terminal end shows orientational disorder
Resumo:
Market liberalization in emerging-market economies and the entry of multinational firms spur significant changes to the industry/institutional environment faced by domestic firms. Prior studies have described how such changes tend to be disruptive to the relatively backward domestic firms, and negatively affect their performance and survival prospects. In this paper, we study how domestic supplier firms may adapt and continue to perform, as market liberalization progresses, through catch-up strategies aimed at integrating with the industry's global value chain. Drawing on internalization theory and the literatures on upgrading and catch-up processes, learning and relational networks, we hypothesize that, for continued performance, domestic supplier firms need to adapt their strategies from catching up initially through technology licensing/collaborations and joint ventures with multinational enterprises (MNEs) to also developing strong customer relationships with downstream firms (especially MNEs). Further, we propose that successful catch-up through these two strategies lays the foundation for a strategy of knowledge creation during the integration of domestic industry with the global value chain. Our analysis of data from the auto components industry in India during the period 1992–2002, that is, the decade since liberalization began in 1991, offers support for our hypotheses.
Resumo:
This book looks at how auto-ID has evolved and how it can be used in the construction industry and across projects from the perspective of all the stakeholders, from owners to design consultants, contractors and the supply chain. It could help to improve efficiency, reduce costs, ensure quality, protect the environment, and enhance safety.
Resumo:
In the last decade, several research results have presented formulations for the auto-calibration problem. Most of these have relied on the evaluation of vanishing points to extract the camera parameters. Normally vanishing points are evaluated using pedestrians or the Manhattan World assumption i.e. it is assumed that the scene is necessarily composed of orthogonal planar surfaces. In this work, we present a robust framework for auto-calibration, with improved results and generalisability for real-life situations. This framework is capable of handling problems such as occlusions and the presence of unexpected objects in the scene. In our tests, we compare our formulation with the state-of-the-art in auto-calibration using pedestrians and Manhattan World-based assumptions. This paper reports on the experiments conducted using publicly available datasets; the results have shown that our formulation represents an improvement over the state-of-the-art.
Resumo:
Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating D-amino acid residues, indicating their potential use for drug delivery in the future.