84 resultados para Acoustic noise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background noise should in theory hinder detection of auditory cues associated with approaching danger. We tested whether foraging chaffinches Fringilla coelebs responded to background noise by increasing vigilance, and examined whether this was explained by predation risk compensation or by a novel stimulus hypothesis. The former predicts that only inter-scan interval should be modified in the presence of background noise, not vigilance levels generally. This is because noise hampers auditory cue detection and increases perceived predation risk primarily when in the head-down position, and also because previous tests have shown that only interscan interval is correlated with predator detection ability in this system. Chaffinches only modified interscan interval supporting this hypothesis. At the same time they made significantly fewer pecks when feeding during the background noise treatment and so the increased vigilance led to a reduction in intake rate, suggesting that compensating for the increased predation risk could indirectly lead to a fitness cost. Finally, the novel stimulus hypothesis predicts that chaffinches should habituate to the noise, which did not occur within a trial or over 5 subsequent trials. We conclude that auditory cues may be an important component of the trade-off between vigilance and feeding, and discuss possible implications for anti-predation theory and ecological processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perceptual effects of room reverberation on a "sir" or "stir" test-word can be observed when the level of reverberation in the word is increased, while the reverberation in a surrounding 'context I utterance remains at a minimal level. The result is that listeners make more "sit" identifications. When the context's reverberation is also increased, to approach the level in the test word, extrinsic perceptual compensation is observed, so that the number of listeners' "sir" identifications reduces to a value similar to that found with minimal reverberation. Thus far, compensation effects have only been observed with speech or speech-like contexts in which the short-term spectrum changes as the speaker's articulators move. The results reported here show that some noise contexts with static short-term spectra can also give rise to compensation. From these experiments it would appear that compensation requires a context with a temporal envelope that fluctuates to some extent, so that parts of it resemble offsets. These findings are consistent with a rather general kind of perceptual compensation mechanism; one that is informed by the 'tails' that reverberation adds at offsets. Other results reported here show that narrow-band contexts do not bring about compensation, even when their temporal-envelopes are the same as those of the more effective wideband contexts. These results suggest that compensation is confined to the frequency range occupied by the context, and that in a wideband sound it might operate in a 'band by band' manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'irrelevant sound effect' in short-term memory is commonly believed to entail a number of direct consequences for cognitive performance in the office and other workplaces (e.g. S. P. Banbury, S. Tremblay, W. J. Macken, & D. M. Jones, 2001). It may also help to identify what types of sound are most suitable as auditory warning signals. However, the conclusions drawn are based primarily upon evidence from a single task (serial recall) and a single population (young adults). This evidence is reconsidered from the standpoint of different worker populations confronted with common workplace tasks and auditory environments. Recommendations are put forward for factors to be considered when assessing the impact of auditory distraction in the workplace. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field study assessed subjective reports of distraction from various office sounds among 88 employees at two sites. In addition, the study examined the amount of exposure the workers had to the noise in order to determine any evidence for habituation. Finally, respondents were asked how they would improve their environment ( with respect to noise), and to rate examples of improvements with regards to their job satisfaction and performance. Out of the sample, 99% reported that their concentration was impaired by various components of office noise, especially telephones left ringing at vacant desks and people talking in the background. No evidence for habituation to these sounds was found. These results are interpreted in the light of previous research regarding the effects of noise in offices and the 'irrelevant sound effect'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.