27 resultados para 3D Face Recognition, Feature Distribution Modelling, Pattern Recognition, Face Recognition
Resumo:
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
BACKGROUND: In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power.In this paper we describe and benchmark the JYDE (Job Yield Distribution Environment) system, which is a meta-scheduler designed to work above cluster schedulers, such as Sun Grid Engine (SGE) or Condor. We demonstrate the ability of JYDE to distribute the load of genomic-scale fold recognition across multiple independent Grid domains. We use the most recent profile-profile version of our mGenTHREADER software in order to annotate the latest version of the Human proteome against the latest sequence and structure databases in as short a time as possible. RESULTS: We show that our JYDE system is able to scale to large numbers of intensive fold recognition jobs running across several independent computer clusters. Using our JYDE system we have been able to annotate 99.9% of the protein sequences within the Human proteome in less than 24 hours, by harnessing over 500 CPUs from 3 independent Grid domains. CONCLUSION: This study clearly demonstrates the feasibility of carrying out on demand high quality structural annotations for the proteomes of major eukaryotic organisms. Specifically, we have shown that it is now possible to provide complete regular updates of profile-profile based fold recognition models for entire eukaryotic proteomes, through the use of Grid middleware such as JYDE.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.
Resumo:
Background Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Methods Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant’s voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a ‘self-identification’ task, classifying each morph as ‘self’ voice (or face) or an ‘other’ voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Results Fifty percent ‘self’ response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = −0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = −0.020, P = 0.438). Conclusions Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism.
Resumo:
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.