178 resultados para dietary restraint
Resumo:
Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass. We show that muscle growth is sustained through protein synthesis driven by Serum/Glucocorticoid Kinase 1 (SGK1) rather than Akt1. Furthermore our metabonomic profiling of hypertrophic muscle shows that carbon from nutrient sources is being channelled for the production of biomass rather than ATP production. However the muscle displays elevated levels of autophagy and decreased levels of muscle tension. We demonstrate the myostatin null muscle is acutely sensitive to changes in diet and activates both the proteolytic and autophagy programmes and shutting down protein synthesis more extensively than is the case for wild-types. Poignantly we show that acute starvation which is detrimental to wild-type animals is beneficial in terms of metabolism and muscle function in the myostatin null mice by normalising tension production.
Resumo:
The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R2 = 0.66) and Bacteroides (R2 = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.
Resumo:
In advancing age, gut populations of beneficial microbes, notably Bifidobacterium spp., show a marked decline. This contributes to an environment less capable of maintaining homoeostasis. This in vitro investigation studied the possible synergistic effects of probiotic supplementation in modulating the gut microbiota enabling prebiotic therapy to in elderly persons. Single stage batch culture anaerobic fermenters were used and inoculated with fecal microbiota obtained from volunteers after taking a 28 day treatment of Bacillus coagulans GBI-30, 6086 (GanedenBC30 (BC30)) or a placebo. The response to prebiotic supplements fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in the fermenters was assessed. Bacterial enumeration was carried out using fluorescent in situ hybridisation and organic acids measured by gas chromatography. Baseline populations of Faecalibacterium prausnitzii, Clostridium lituseburense and Bacillus spp. were significantly higher in those having consumed BC30 compared to the placebo. Both prebiotics increased populations of several purportedly beneficial bacterial groups in both sets of volunteers. Samples from volunteers having ingested the BC30 also increased populations of C. lituseburense, Eubacterium rectale and F. prausnitzii more so than in persons who had consumed the placebo, this also resulted in significantly higher concentrations of butyrate, acetate and propionate. This shows that consumption of BC30 and subsequent use of prebiotics resulted in elevated populations of beneficial genres of bacteria as well as organic acid production
Resumo:
Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: −0.4, −0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752.
Resumo:
Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4
Resumo:
The interplay between the fat mass- and obesity-associated (FTO) gene variants and diet has been implicated in the development of obesity. The aim of the present analysis was to investigate associations between FTO genotype, dietary intakes and anthropometrics among European adults. Participants in the Food4Me randomised controlled trial were genotyped for FTO genotype (rs9939609) and their dietary intakes, and diet quality scores (Healthy Eating Index and PREDIMED-based Mediterranean diet score) were estimated from FFQ. Relationships between FTO genotype, diet and anthropometrics (weight, waist circumference (WC) and BMI) were evaluated at baseline. European adults with the FTO risk genotype had greater WC (AAv. TT: +1·4 cm; P=0·003) and BMI (+0·9 kg/m2; P=0·001) than individuals with no risk alleles. Subjects with the lowest fried food consumption and two copies of the FTO risk variant had on average 1·4 kg/m2 greater BMI (Ptrend=0·028) and 3·1 cm greater WC (Ptrend=0·045) compared with individuals with no copies of the risk allele and with the lowest fried food consumption. However, there was no evidence of interactions between FTO genotype and dietary intakes on BMI and WC, and thus further research is required to confirm or refute these findings.
Resumo:
Obesity prevalence is increasing. The management of this condition requires a detailed analysis of the global risk factors in order to develop personalised advice. This study is aimed to identify current dietary patterns and habits in Spanish population interested in personalised nutrition and investigate associations with weight status. Self-reported dietary and anthropometrical data from the Spanish participants in the Food4Me study, were used in a multidimensional exploratory analysis to define specific dietary profiles. Two opposing factors were obtained according to food groups’ intake: Factor 1 characterised by a more frequent consumption of traditionally considered unhealthy foods; and Factor 2, where the consumption of “Mediterranean diet” foods was prevalent. Factor 1 showed a direct relationship with BMI (β = 0.226; r2 = 0.259; p < 0.001), while the association with Factor 2 was inverse (β = −0.037; r2 = 0.230; p = 0.348). A total of four categories were defined (Prudent, Healthy, Western, and Compensatory) through classification of the sample in higher or lower adherence to each factor and combining the possibilities. Western and Compensatory dietary patterns, which were characterized by high-density foods consumption, showed positive associations with overweight prevalence. Further analysis showed that prevention of overweight must focus on limiting the intake of known deleterious foods rather than exclusively enhance healthy products.
Resumo:
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.
Resumo:
Background: Previous data support the benefits of reducing dietary saturated fatty acids (SFAs) on insulin resistance (IR) and other metabolic risk factors. However, whether the IR status of those suffering from metabolic syndrome (MetS) affects this response is not established. OBJECTIVE: Our objective was to determine whether the degree of IR influences the effect of substituting high-saturated fatty acid (HSFA) diets by isoenergetic alterations in the quality and quantity of dietary fat on MetS risk factors. DESIGN: In this single-blind, parallel, controlled, dietary intervention study, MetS subjects (n = 472) from 8 European countries classified by different IR levels according to homeostasis model assessment of insulin resistance (HOMA-IR) were randomly assigned to 4 diets: an HSFA diet; a high-monounsaturated fatty acid (HMUFA) diet; a low-fat, high-complex carbohydrate (LFHCC) diet supplemented with long-chain n-3 polyunsaturated fatty acids (1.2 g/d); or an LFHCC diet supplemented with placebo for 12 wk (control). Anthropometric, lipid, inflammatory, and IR markers were determined. RESULTS: Insulin-resistant MetS subjects with the highest HOMA-IR improved IR, with reduced insulin and HOMA-IR concentrations after consumption of the HMUFA and LFHCC n-3 diets (P < 0.05). In contrast, subjects with lower HOMA-IR showed reduced body mass index and waist circumference after consumption of the LFHCC control and LFHCC n-3 diets and increased HDL cholesterol concentrations after consumption of the HMUFA and HSFA diets (P < 0.05). MetS subjects with a low to medium HOMA-IR exhibited reduced blood pressure, triglyceride, and LDL cholesterol levels after the LFHCC n-3 diet and increased apolipoprotein A-I concentrations after consumption of the HMUFA and HSFA diets (all P < 0.05). CONCLUSIONS: Insulin-resistant MetS subjects with more metabolic complications responded differently to dietary fat modification, being more susceptible to a health effect from the substitution of SFAs in the HMUFA and LFHCC n-3 diets. Conversely, MetS subjects without IR may be more sensitive to the detrimental effects of HSFA intake. The metabolic phenotype of subjects clearly determines response to the quantity and quality of dietary fat on MetS risk factors, which suggests that targeted and personalized dietary therapies may be of value for its different metabolic features.
Resumo:
Background: Accurate dietary assessment is key to understanding nutrition-related outcomes and is essential for estimating dietary change in nutrition-based interventions. Objective: The objective of this study was to assess the pan-European reproducibility of the Food4Me food-frequency questionnaire (FFQ) in assessing the habitual diet of adults. Methods: Participantsfromthe Food4Me study, a 6-mo,Internet-based, randomizedcontrolled trial of personalized nutrition conducted in the United Kingdom, Ireland, Spain, Netherlands, Germany, Greece, and Poland were included. Screening and baseline data (both collected before commencement of the intervention) were used in the present analyses, and participants were includedonly iftheycompleted FFQs at screeningand at baselinewithin a 1-mo timeframebeforethe commencement oftheintervention. Sociodemographic (e.g., sex andcountry) andlifestyle[e.g.,bodymass index(BMI,inkg/m2)and physical activity] characteristics were collected. Linear regression, correlation coefficients, concordance (percentage) in quartile classification, and Bland-Altman plots for daily intakes were used to assess reproducibility. Results: In total, 567 participants (59% female), with a mean 6 SD age of 38.7 6 13.4 y and BMI of 25.4 6 4.8, completed bothFFQswithin 1 mo(mean 6 SD: 19.26 6.2d).Exact plus adjacent classification oftotal energy intakeinparticipants was highest in Ireland (94%) and lowest in Poland (81%). Spearman correlation coefficients (r) in total energy intake between FFQs ranged from 0.50 for obese participants to 0.68 and 0.60 in normal-weight and overweight participants, respectively. Bland-Altman plots showed a mean difference between FFQs of 210 kcal/d, with the agreement deteriorating as energy intakes increased. There was little variation in reproducibility of total energy intakes between sex and age groups. Conclusions: The online Food4Me FFQ was shown to be reproducible across 7 European countries when administered within a 1-mo period to a large number of participants. The results support the utility of the online Food4Me FFQ as a reproducible tool across multiple European populations. This trial was registered at clinicaltrials.gov as NCT01530139.