179 resultados para copper compounds
Resumo:
CFC-113a (CF3CCl3), CFC-112 (CFCl2CFCl2) and HCFC-133a (CF3CH2Cl) are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP). The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012) concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100), are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a
Resumo:
There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.
Resumo:
Bulk polycrystalline samples in the series Ti1+xS2 (x = 0 to 0.05) were prepared using high temperature synthesis from the elements and spark plasma sintering. X-ray structure analysis shows that the lattice constant c expands as titanium intercalates between TiS2 slabs. For x=0, a Seebeck coefficient close to -300 μV/K is observed for the first time in TiS2 compounds. The decrease in electrical resistivity and Seebeck coefficient that occurs upon Ti intercalation (Ti off stoichiometry) supports the view that charge carrier transfer to the Ti 3d band takes place and the carrier concentration increases. At the same time, the thermal conductivity is reduced by phonon scattering due to structural disorder induced by Ti intercalation. Optimum ZT values of 0.14 and 0.48 at 300K and 700K, respectively, are obtained for x=0.025.
Resumo:
Liquid Chromatography Mass Spectrometry (LC-MS) was used to obtain glucosinolate and flavonol content for 35 rocket accessions and commercial varieties. 13 glucosinolates and 11 flavonol compounds were identified. Semi-quantitative methods were used to estimate concentrations of both groups of compounds. Minor glucosinolate composition was found to be different between accessions; concentrations varied significantly. Flavonols showed differentiation between genera, with Diplotaxis accumulating quercetin glucosides and Eruca accumulating kaempferol glucosides. Several compounds were detected in each genus that have only previously been reported in the other. We highlight how knowledge of phytochemical content and concentration can be used to breed new, nutritionally superior varieties. We also demonstrate the effects of controlled environment conditions on the accumulations of glucosinolates and flavonols and explore the reasons for differences with previous studies. We stress the importance of consistent experimental design between research groups to effectively compare and contrast results.
Resumo:
The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing.
Resumo:
Organo-copper(I) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N–HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes
Resumo:
Integrating top fruit production into an agroforestry system, where trees are integrated with arable crop production may have a beneficial effect on the control of plant pathogens such as scab (Venturia inaequalis). Apple yields and pest and disease levels were assessed in a novel apple/arable agroforestry system in Suffolk, and compared with a modern local organic orchard in 2012. Despite 2012 being a very bad year for apple production in the UK, apple yields in the agroforestry system appeared to be comparable with standard figures when scaled up from 2.5% land area under apple production to 100% apples, and even at just 2.5% cover, outperformed the organic orchard used for comparison. Initial indications are that scab levels were over twice as high in the organic orchard than in the agroforestry, indicating that this approach may offer some potential in reducing copper use in organic apple production. However, further research will be required to confirm these early results.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
Layered copper–nickel cyanide, CuNi(CN)4, a 2-D negative thermal expansion material, is one of a series of copper(II)-containing cyanides derived from Ni(CN)2. In CuNi(CN)4, unlike in Ni(CN)2, the cyanide groups are ordered generating square-planar Ni(CN)4 and Cu(NC)4 units. The adoption of square-planar geometry by Cu(II) in an extended solid is very unusual.
Resumo:
The feasibility to synthesize, in large quantity, pure and non-toxic tetrahedrite compounds using high-energy mechanical-alloying from only elemental precursors is reported in the present paper for the first time. Our processing technique allows a better control of the final product composition and leads to high thermoelectric performances (ZT of 0.75 at 700 K), comparable to that reported on sealed tube synthesis samples. Combined with spark plasma sintering, the production of highly pure and dense samples is achieved in a very short time, at least 8 times shorter than in conventional liquid-solid-vapor synthesis process. The process described in this paper is a promising way to produce high performance tetrahedrite materials for cost-effective and large-scale thermoelectric applications.
Resumo:
The aim of the study was to compare the antimicrobial activities of freshly-made, heat-treated (HT), and 14 d stored (+)-Catechin solutions with (+)-catechin flavanol isomers in the presence of copper sulphate. (+)-Catechin activity was investigated when combined with different ratios of Cu2+; 100°C heat treatment; autoclaving; and 14 d storage against Staphylococcus aureus. Cu2+-(+)-Catechin complexation, isomer structure-activity relationships, and H2O2 generation were also investigated. Freshly-made, HT, and 14d stored flavanols showed no activity. Whilst combined Cu2+-autoclaved (+)-Catechin and -HT(+)-Catechin activities were similar, HT(+)-Catechin was more active than either freshly-made (+)-catechin (generating more H2O2) or (-)-Epicatechin (though it generated less H2O2) or 14d-(+)-Catechin (which had similar activity to Cu2+ controls - though it generated more H2O2). When combined with Cu2+, in terms of rates of activity, HT(+)-Catechin was lower than (-)-Epigallocatechin gallate and greater than freshly-made (+)-Catechin. Freshly-made and HT(+)-Catechin formed acidic complexes with Cu2+ as indicated by pH and UV-vis measurements although pH changes did not account for antimicrobial activity. Freshly-made and HT(+)-Catechin both formed Cu2+ complexes. The HT(+)-Catechin complex generated more H2O2 which could explain its higher antimicrobial activity.
Resumo:
Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of approx. 0.5 Wm-1K-1, a value normally found in amorphous materials. Here we unveil the origin of the unusual thermal transport properties of these phases. First principles calculations of the vibrational properties combined with analysis of in-situ neutron diffraction data, demonstrate that weak bonding of copper atoms within the structure leads to an unexpected vibrational mode at low frequencies, which is likely to be a major contributor to the low thermal conductivity of these materials. In addition, we show that anharmonicity and the large Grüneisen parameter in these oxychalcogenides are mainly related to the low frequency copper vibrations, rather than to the Bi3+ lone pairs.
Resumo:
Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.
Resumo:
The present research explores the degree of morphological structure of compound words in the native and nonnative lexicons, and provides additional data on the access to these representations. Native and nonnative speakers (L1 Spanish) of English were tested using a lexical decision task with masked priming of the compound’s constituents in isolation, including two orthographic conditions to control for a potential orthographic locus of effects. Both groups displayed reliable priming effects, unmediated by semantics, for the morphological but not the orthographic conditions as compared to an unrelated baseline. Results contribute further evidence of morphological structure in the lexicon of native speakers, and suggest that lexical representation and access in a second language are qualitatively comparable at relatively advanced levels of proficiency.