174 resultados para Howell, Timothy
Resumo:
Aims Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance). Methods Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation. Results Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought. Conclusions These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.
Resumo:
Fractionation of the methanol extract of the leaves of Oricia renieri and Oricia suaveolens (Rutaceae) led to the isolation of 13 compounds including the hitherto unknown furoquinoline alkaloid named 6,7-methylenedioxy-5-hydroxy-8-methoxydictamnine (1) and a flavanone glycoside named 5-hydroxy-40-methoxy-7-O-[a-Lrhamnopyranosyl(1000→500)-b-D-apiofuranosyl]-flavanoside (2), together with 11 known compounds (3–13). The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral data and comparison. All compounds isolated were examined for their activity against human carcinoma cell lines. The alkaloids 1, 5, 12, 13 and the phenolic 2, 8, 11 tested compounds exhibited non-selective moderate cytotoxic activity with IC50 8.7–15.9mM whereas compounds 3, 4, 6, 7, 9 and 10 showed low activity.
Resumo:
Conference proceedings paper in Alexander, O. (Ed.) 2007, Proceedings of the 2005 joint BALEAP/SATEFL conference: New Approaches to Materials Development for Language Learning. Bern: Peter Lang.
Resumo:
Conference proceedings papaer in Whong, M. (Ed.), Proceedings of the 2007 BALEAP conference: English in a globalising world: English as an academic lingua franca,. Bern: Peter Lang.
Resumo:
Cardiac hypertrophy, an important adaptational response, is associated with up-regulation of the immediate early gene, c- jun, which encodes the c-Jun transcription factor. c-Jun may feed back to up-regulate its own transcription and, since the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) phosphorylate c-Jun(Ser-63/73) to increase its transactivating activity, JNKs are thought to be the principal factors involved in c- jun up-regulation. Hypertrophy in primary cultures of cardiac myocytes is induced by endothelin-1, phenylephrine or PMA, probably through activation of one or more of the MAPK family. These three agonists increased c- jun mRNA with the rank order of potency of PMA approximately endothelin-1>phenylephrine. Up-regulation of c- jun mRNA by endothelin-1 was attenuated by inhibitors of protein kinase C (GF109203X) and the extracellular signal-regulated kinase (ERK) cascade (PD98059 or U0126), but not by inhibitors of the JNK (SP600125) or p38-MAPK (SB203580) cascades. Hyperosmotic shock (0.5 M sorbitol) powerfully activates JNKs, but did not increase c- jun mRNA. These data suggest that ERKs, rather than JNKs, are required for c- jun up-regulation. However, endothelin-1 and phenylephrine induced greater up-regulation of c-Jun protein than PMA and phosphorylation of c-Jun(Ser-63/73) correlated with the level of c-Jun protein. Up-regulation of c-Jun protein by endothelin-1 was attenuated by inhibitors of protein kinase C and the ERK cascade, probably correlating with a primary input of ERKs into transcription. In addition, SP600125 inhibited the phosphorylation of c-Jun(Ser-63/73), attenuated the increase in c-Jun protein induced by endothelin-1 and increased the rate of c-Jun degradation. Thus whereas ERKs are the principal MAPKs required for c- jun transcription, JNKs are necessary to stabilize c-Jun for efficient up-regulation of the protein.
Resumo:
Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.
Resumo:
Oxidative stress promotes cardiac myocyte apoptosis through the mitochondrial death pathway. Since Bcl-2 family proteins are key regulators of apoptosis, we examined the effects of H2O2 on the expression of principal Bcl-2 family proteins (Bcl-2, Bcl-xL, Bax, Bad) in neonatal rat cardiac myocytes. Protein expression was assessed by immunoblotting. Bcl-2, Bax, and Bad were all down-regulated in myocytes exposed to 0.2 mm H2O2, a concentration that induces apoptosis. In contrast, although Bcl-xL levels initially declined, the protein was re-expressed from 4-6 h. Bcl-xL mRNA was up-regulated from 2 to 4 h in neonatal rat or mouse cardiac myocytes exposed to H2O2, consistent with the re-expression of protein. Four different untranslated first exons have been identified for the Bcl-x gene (exons 1, 1B, 1C, and 1D, where exon 1 is the most proximal and exon 1D the most distal to the coding region). All were detected in mouse or rat neonatal cardiac myocytes, but exon 1D was not expressed in adult mouse hearts. In neonatal mouse or rat cardiac myocytes, H2O2 induced the expression of exons 1B, 1C, and 1D, but not exon 1. These data demonstrate that the Bcl-x gene is selectively responsive to oxidative stress, and the response is mediated through distal promoter regions.
Resumo:
Oxidative stress induces cardiac myocyte apoptosis. At least some effects are probably mediated through changes in gene expression. Using Affymetrix arrays, we examined the changes in gene expression induced by H(2)O(2) (0.04, 0.1, and 0.2mM; 2 and 4h) in rat neonatal ventricular myocytes. Changes in selected upregulated genes were confirmed by ratiometric RT-PCR. p21(Cip1/Waf1) was one of the only two genes upregulated in all conditions studied. Of the heat shock proteins, only Hsp70/70.1 was induced by H(2)O(2) with no change in the expression of Hsp25, Hsp60 or Hsp90. Heme oxygenase 1 was also potently upregulated, but not heme oxygenases 2 or 3. Of the intercellular adhesion proteins, syndecan-1 was significantly upregulated in response to H(2)O(2), with little change in the expression of other syndecans and no change in expression of any of the integrins studied. Thus, oxidative stress, exemplified by H(2)O(2), selectively promotes the expression of specific gene family members.
Resumo:
Cardiac hypertrophy is associated with hypertrophic growth of cardiac myocytes and increased fibrosis. Much is known of the stimuli which promote myocyte hypertrophy and the changes associated with the response, but the links between the two are largely unknown. Using subtractive hybridization, we identified three genes which are acutely (<1 h) upregulated in neonatal rat ventricular myocytes exposed to the alpha-adrenergic agonist, phenylephrine. One represented connective tissue growth factor (CTGF) which is implicated in fibrosis and promotes hypertrophy in other cells. We further examined the expression of CTGF mRNA and protein in cardiac myocytes using quantitative PCR and immunoblotting, confirming that phenylephrine increased CTGF mRNA (maximal within 1 h) and protein (increased over 4 - 24 h). Endothelin-1 promoted a greater, though transient, increase in CTGF mRNA, but the increase in CTGF protein was sustained over 8 h. Neither agonist increased CTGF mRNA in cardiac non-myocytes. By increasing the expression of CTGF in cardiac myocytes, hypertrophic agonists such as phenylephrine and endothelin-1 may promote fibrosis. CTGF may also propagate the hypertrophic response initiated by these agonists.
Resumo:
Considerable efforts have been expended in elucidating the inter-cellular and intra-cellular signaling pathways which elicit cardiac myocyte hypertrophy or apoptosis, and in identifying the changes which are associated with the end-stage of the response. The challenge now is to link the two. Although some of the signaling effects will be the acute modulation of existing protein function, long-term effects which bring about and maintain the hypertrophic state or which culminate in cell death are mediated at the level of gene and protein expression. With the advances in micro-array technology and genome sequencing, it is now possible to obtain a picture of the global gene expression profile in myocytes or in whole heart which dictates the proteins which could be made. This is not the final picture since additional regulation at the level of translation modulates the relative proportions of each protein that can be made from the transcriptome. Even here, further regulation of protein stability and turnover means that ultimately it is still necessary to examine the proteome to determine what may cause the functional changes in a cell. Thus, in order to gain a full picture of events which regulate the response and gain some insight into possible points of intervention for therapy, it is necessary to examine gene expression, mRNA translation and protein expression in concert.
Resumo:
The hypertrophic agonist endothelin-1 rapidly but transiently activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade (and other signalling pathways) in cardiac myocytes, but the events linking this to hypertrophy are not understood. Using Affymetrix rat U34A microarrays, we identified the short-term (2-4 h) changes in gene expression induced in neonatal myocytes by endothelin-1 alone or in combination with the ERK1/2 cascade inhibitor, U0126. Expression of 15 genes was significantly changed by U0126 alone, and expression of an additional 78 genes was significantly changed by endothelin-1. Of the genes upregulated by U0126, four are classically induced through the aryl hydrocarbon receptor (AhR) by dioxins suggesting that U0126 activates the xenobiotic response element in cardiac myocytes potentially independently of effects on ERK1/2 signalling. The 78 genes showing altered expression with endothelin-1 formed five clusters: (i) three clusters showing upregulation by endothelin-1 according to time course (4 h > 2 h; 2 h > 4 h; 2 h approximately 4 h) with at least partial inhibition by U0126; (ii) a cluster of 11 genes upregulated by endothelin-1 but unaffected by U0126 suggesting regulation through signalling pathways other than ERK1/2; (iii) a cluster of six genes downregulated by endothelin-1 with attenuation by U0126. Thus, U0126 apparently activates the AhR in cardiac myocytes (which must be taken into account in protracted studies), but careful analysis allows identification of genes potentially regulated acutely via the ERK1/2 cascade. Our data suggest that the majority of changes in gene expression induced by endothelin-1 are mediated by the ERK1/2 cascade.