42 resultados para migration of rhizobia
Resumo:
Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizolbia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Resumo:
As a model for brain inflammation we previously studied transcriptional profiles of tumor necrosis factor-alpha (TNF)treated U373 astroglioma cells. In previous work we were able to demonstrate that the chemokine monocyte chemoattractant protein-1 (MCP-1, SCYA2, CCL2, MCAF) expression in U373 cells was inducible by TNF-alpha treatment. Demonstrably MCP-1 mRNA and protein expression in U373 cells was sustainable over time and at the highest level of all genes analyzed (Schwamborn et al., BMC Genomics 4, 46, 2003). In the hematopoietic system MCP-1 is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. In search of further functions in brain inflammation we tested the hypothesis that MCP-1 acts as a chemokine on neural stem cells. Here we report that MCP-1 activates the migration capacity of rat-derived neural stem cells. The migration of stem cells in a Boyden chamber analysis was elevated after stimulation with MCP-1. Time-lapse video microscopy visualized the migration of single stem cells from neurospheres in MCP-1-treated cultures, whereas untreated cultures depicted no migration at all, but showed signs of sprouting. Expression of the MCP-1 receptor CCR2 in neurosphere cultures was verified by RT-PCR and immunofluorescence microscopy. Supernatants from TNF-treated U373 cells also induced migration of neural stem cells.
Resumo:
Aluminium (Al) has been measured in human breast tissue, and may be a contributory factor in breast cancer development. At the 10th Keele meeting, we reported that long-term exposure to Al could increase migratory properties of oestrogen-responsive MCF-7 human breast cancer cells suggesting a role for Al in the metastatic process. We now report that long-term exposure (20–25 weeks) to Al chloride or Al chlorohydrate at 10−4 M or 10−5Mconcentrations can also increase themigration of oestrogen unresponsiveMDA-MB-231 human breast cancer cells as measured using time-lapse microscopy and xCELLigence technology. In parallel, Al exposure was found to give rise to increased secretion of active matrixmetalloproteinaseMMP9 as measured by zymography, and increased intracellular levels of activated MMP14 as measured by western immunoblotting. These results demonstrate that Al can increase migration of human breast cancer cells irrespective of their oestrogen responsiveness, and implicate alterations to MMPs as a potential mechanism worthy of further study.
Resumo:
The continuous operation of insect-monitoring radars in the UK has permitted, for the first time, the characterization of various phenomena associated with high-altitude migration of large insects over this part of northern Europe. Previous studies have taken a case-study approach, concentrating on a small number of nights of particular interest. Here, combining data from two radars, and from an extensive suction- and light-trapping network, we have undertaken a more systematic, longer-term study of diel flight periodicity and vertical distribution of macro-insects in the atmosphere. Firstly, we identify general features of insect abundance and stratification, occurring during the 24-hour cycle, which emerge from four years’ aggregated radar data for the summer months in southern Britain. These features include mass emigrations at dusk and to a lesser extent at dawn, and daytime concentrations associated with thermal convection. We then focus our attention on the well-defined layers of large nocturnal migrants that form in the early evening, usually at heights of 200–500 m above ground. We present evidence from both radar and trap data that these nocturnal layers are composed mainly of noctuid moths, with species such as Noctua pronuba, Autographa gamma, Agrotis exclamationis, A. segetum, Xestia c-nigrum and Phlogophora meticulosa predominating.
Resumo:
This paper forms part of research that is investigating the migration of young Bajan-Brits to Barbados. Specifically, it explores the role of quality of life issues in the decision-making processes of young Bajan-Brits as they negotiate their 'return' to Barbados. The research, based on 51 in-depth qualitative interviews conducted with an under-researched cohort of young Bajan-Brits living in Barbados, argues from a 'lure of home' conceptualisation that the return of young Bajan-Brits to Barbados can best be understood from the context of a search for a better quality of life in the face of social and economic disenfranchisement in the UK context. Subsequently, the paper examines the extent to which the quality of life factors which formed the basis of return to Barbados have in fact been realised on the part of young Bajan-Brits in their adjustment to life in Barbados. The paper ultimately argues that despite problems of adjustment, young Bajan-Brits have generally been successful in actualising a better quality of life in Barbados. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Different molecular methods: BOX-PCR fingerprinting, R-FLP-PCR and sequencing of the 16S rDNA as well as the symbiotic genes nodC and nifH, were used to study the genetic diversity within a collection of nodulating bean rhizobia isolated from five soils of North-West Morocco. BOX fingerprints analysis of 241 isolates revealed 19 different BOX profiles. According to the PFLP-PCR and sequencing of 16S rDNA carried out on 45 representative isolates, 5 genotypes were obtained corresponding to the species Rhizobium etli, R. tropici, R. gallicum, R. leguminosarum and Sinorhizobium meliloti. The most abundant species were R. etli and R. tropici (61% and 24%, respectively). A high intraspecific diversity was observed among the R. etli isolates, while the R. tropici group was homogeneous. Most of the rhizobia studied belong to species known to nodulate common bean, while 2 species were unconventional microsymbionts: R. leguminosarum biovar viciae and S. meliloti. Our results, especially the nodulation promiscuity of common bean and the relation between the predominance of some species of rhizobia in particular soils and the salt content of these soils, indicate that there is a real need for a better understanding of the distribution of common bean rhizobia species in the soils of Morocco before any inoculation attempt.
Resumo:
A model of species migration is presented which takes the form of a reaction-diffusion system. We consider special limits of this model in which we demonstrate the existence of travelling wave solutions. These solutions can be used to describe the migration of cells, bacteria, and some organisms. © 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives: The search for agents that are capable of preventing restenosis and reduce the risk of late thrombosis is of utmost importance. In this study we aim to evaluate the in vitro effects of ibuprofen on proliferation and migration of human coronary artery smooth muscle cells (HCASMCs) and on human coronary artery endothelial cells (HCAECs) migration. Methods: Cell proliferation was evaluated by direct cell counting using trypan blue exclusion. Cell migration was assessed by wound healing “scratch” assay and by time lapse video-microscopy. Protein expression was assessed by immunoblotting, and morphological changes were studied by immunocytochemistry. The involvement of the PPARγ pathway was studied with the selective agonist troglitazone, and the use of highly selective antagonists of PPARγ such as PGF2α and GW9662. Results: We demonstrate that ibuprofen inhibits proliferation and migration of HCASMCs and induces a switch in HCASMCs towards a differentiated and contractile phenotype, and that these effects are mediated through the PPARγ pathway. Importantly we also show that the effects of ibuprofen are cell type specific as it does not affect migration and proliferation of endothelial cells. Conclusions: Taken together, our results suggest that ibuprofen could be an effective drug for the development of novel drug eluting stents, which could lead reduced rates of restenosis and potentially other complications of DES stent implantation.
Resumo:
It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.
Resumo:
This paper illustrates the opportunities afforded by the adoption of postcolonial discourse in development geography, drawing specifically on issues of transnationalism, hybridity and inbetweeness. The utility of such notions and associated approaches is illustrated by the authors' current research on the migration of young, second generation and foreign-born 'Bajan-Brits' to the small Caribbean island nation of Barbados, the homeland of their parents. Focussing on issues of 'race' and gender, the paper examines the experiences of return migration among this cohort from an interpretative perspective framed within postcolonial discourse. It argues that notwithstanding the considerable sociocultural problems of adjustment encountered, these Bajan-Brit 'returnees' may be seen as occupying positions of relative economic privilege. Theirs is a liminal space derived by virtue of having been born and/or raised in the UK and being of the black 'race'. Accordingly, they are demonstrated to be both advantaged and disadvantaged; both transnational and national; and black but, in some senses, symbolically white.