70 resultados para harmonic approximation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared intensities of the fundamental, overtone and combination transitions in furan, pyrrole and thiophene have been calculated using the variational normal coordinate code MULTIMODE. We use pure vibrational wavefunctions, and quartic force fields and cubic dipole moment vector surfaces, generated by density functional theory. The results are compared graphically with second-order perturbation calculations and with relative intensities from experiment for furan and pyrrole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two errors in my paper “Wave functions for the methane molecule” [1] are corrected. They concern my f-harmonic approximation to the wave-function in the equilibrium configuration, for which the final expression for the wave function, the energy lowering, and the density function were all in error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using coupled-cluster approach full six-dimensional analytic potential energy surfaces for two cyclic SiC3 isomers [C-C transannular bond (I) and Si-C transannular bond (II)] have been generated and used to calculate anharmonic vibrational wave functions. Several strong low-lying anharmonic resonances have been found. In both isomers already some of the fundamental transitions cannot be described within the harmonic approximation. Adiabatic electron affinities and ionization energies have been calculated as well. The Franck-Condon factors for the photodetachment processes c-SiC3-(I)-> c-SiC3(I) and c-SiC3-(II)-> c-SiC3(II) are reported. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber. The obtained estimates can be used in the h- and p-convergence analysis of wave-based finite element schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the use of the perfectly matched layer (PML) to truncate a time harmonic rough surface scattering problem in the direction away from the scatterer. We prove existence and uniqueness of the solution of the truncated problem as well as an error estimate depending on the thickness and composition of the layer. This global error estimate predicts a linear rate of convergence (under some conditions on the relative size of the real and imaginary parts of the PML function) rather than the usual exponential rate. We then consider scattering by a half-space and show that the solution of the PML truncated problem converges globally at most quadratically (up to logarithmic factors), providing support for our general theory. However we also prove exponential convergence on compact subsets. We continue by proposing an iterative correction method for the PML truncated problem and, using our estimate for the PML approximation, prove convergence of this method. Finally we provide some numerical results in 2D.(C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an extended version of our normal coordinate program ASYM40, which may be used to transform Cartesian force constants from ab initio calculations to a force field in nonredundant internal (symmetry) coordinates. When experimental data are available, scale factors for the theoretical force field may then be optimized by least-squares refinement. The alternative of refining an empirical force field to fit a wide variety of data, as with the previous version ASYM20, has been retained. We compare the results of least-squares refinement of the full harmonic force field with least-squares refinement of only the scale factors for an SCF calculated force field and conclude that the latter approach may be useful for large molecules where more sophisticated calculations are impractical. The refinement of scale factors for a theoretical force field is also useful when there are only limited spectroscopic data. The program will accept ab initio calculated force fields from any program that presents Cartesian force constants as output. The program is available through Quantum Chemistry Program Exchange.