78 resultados para false personation
Resumo:
Older adults often demonstrate higher levels of false recognition than do younger adults. However, in experiments using novel shapes without preexisting semantic representations, this age-related elevation in false recognition was found to be greatly attenuated. Two experiments tested a semantic categorization account of these findings, examining whether older adults show especially heightened false recognition if the stimuli have preexisting semantic representations, such that semantic category information attenuates or truncates the encoding or retrieval of item-specific perceptual information. In Experiment 1, ambiguous shapes were presented with or without disambiguating semantic labels. Older adults showed higher false recognition when labels were present but not when labels were never presented. In Experiment 2, older adults showed higher false recognition for concrete but not abstract objects. The semantic categorization account was supported.
Resumo:
We argue that while it is a valuable contribution, Carruthers' Model may be too restrictive to elaborate our understanding of the development of mindreading and metacognition, or to enrich our knowledge of individual differences and psychopathology. To illustrate, we describe pertinent examples where there may be a critical interplay between primitive social-cognitive processes and emerging self-attributions.
Resumo:
The goal of this research was to investigate the changes in neural processing in mild cognitive impairment. We measured phase synchrony, amplitudes, and event-related potentials in veridical and false memory to determine whether these differed in participants with mild cognitive impairment compared with typical, age-matched controls. Empirical mode decomposition phase locking analysis was used to assess synchrony, which is the first time this analysis technique has been applied in a complex cognitive task such as memory processing. The technique allowed assessment of changes in frontal and parietal cortex connectivity over time during a memory task, without a priori selection of frequency ranges, which has been shown previously to influence synchrony detection. Phase synchrony differed significantly in its timing and degree between participant groups in the theta and alpha frequency ranges. Timing differences suggested greater dependence on gist memory in the presence of mild cognitive impairment. The group with mild cognitive impairment had significantly more frontal theta phase locking than the controls in the absence of a significant behavioural difference in the task, providing new evidence for compensatory processing in the former group. Both groups showed greater frontal phase locking during false than true memory, suggesting increased searching when no actual memory trace was found. Significant inter-group differences in frontal alpha phase locking provided support for a role for lower and upper alpha oscillations in memory processing. Finally, fronto-parietal interaction was significantly reduced in the group with mild cognitive impairment, supporting the notion that mild cognitive impairment could represent an early stage in Alzheimer’s disease, which has been described as a ‘disconnection syndrome’.
Resumo:
Recent studies have indicated that research practices in psychology may be susceptible to factors that increase false-positive rates, raising concerns about the possible prevalence of false-positive findings. The present article discusses several practices that may run counter to the inflation of false-positive rates. Taking these practices into account would lead to a more balanced view on the false-positive issue. Specifically, we argue that an inflation of false-positive rates would diminish, sometimes to a substantial degree, when researchers (a) have explicit a priori theoretical hypotheses, (b) include multiple replication studies in a single paper, and (c) collect additional data based on observed results. We report findings from simulation studies and statistical evidence that support these arguments. Being aware of these preventive factors allows researchers not to overestimate the pervasiveness of false-positives in psychology and to gauge the susceptibility of a paper to possible false-positives in practical and fair ways.
Resumo:
The Bloom filter is a space efficient randomized data structure for representing a set and supporting membership queries. Bloom filters intrinsically allow false positives. However, the space savings they offer outweigh the disadvantage if the false positive rates are kept sufficiently low. Inspired by the recent application of the Bloom filter in a novel multicast forwarding fabric, this paper proposes a variant of the Bloom filter, the optihash. The optihash introduces an optimization for the false positive rate at the stage of Bloom filter formation using the same amount of space at the cost of slightly more processing than the classic Bloom filter. Often Bloom filters are used in situations where a fixed amount of space is a primary constraint. We present the optihash as a good alternative to Bloom filters since the amount of space is the same and the improvements in false positives can justify the additional processing. Specifically, we show via simulations and numerical analysis that using the optihash the false positives occurrences can be reduced and controlled at a cost of small additional processing. The simulations are carried out for in-packet forwarding. In this framework, the Bloom filter is used as a compact link/route identifier and it is placed in the packet header to encode the route. At each node, the Bloom filter is queried for membership in order to make forwarding decisions. A false positive in the forwarding decision is translated into packets forwarded along an unintended outgoing link. By using the optihash, false positives can be reduced. The optimization processing is carried out in an entity termed the Topology Manger which is part of the control plane of the multicast forwarding fabric. This processing is only carried out on a per-session basis, not for every packet. The aim of this paper is to present the optihash and evaluate its false positive performances via simulations in order to measure the influence of different parameters on the false positive rate. The false positive rate for the optihash is then compared with the false positive probability of the classic Bloom filter.
Resumo:
Long decorrelation timescales of the annular mode are observed in the lower stratosphere. This study uses a simple dynamical model, which has been used extensively to study stratosphere-troposphere coupling, to investigate the origin of the long dynamical timescales. Several long runs of the model are completed, with different imposed thermal damping timescales in the stratosphere. The dynamical timescales of the annular mode are found to be largely insensitive to the input thermal damping timescales, producing similar dynamical timescales in all cases below 50hPa. This result suggests that the hypothesis that long timescales in the lower stratosphere are due to long radiative timescales in this region is false.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modelling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.
Resumo:
Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.