23 resultados para Mariamne, consort of Herod I, King of Judea, ca. 57-ca. 29 B.C.
Resumo:
The outer domain (OD) of human immunodeficiency virus (HIV)-1 gp120 represents an attractive, if difficult, target for a beneficial immune response to HIV infection. Unlike the entire gp120, the OD is structurally stable and contains the surfaces that interact with both the primary and secondary cellular receptors. The primary strain-specific neutralizing target, the V3 loop, lies within the OD, as do epitopes for two cross-reactive neutralizing monoclonal antibodies (mAbs), b12 and 2G12, and the contact sites for a number of inhibitory lectins. The OD is poorly immunogenic, at least in the context of complete gp120, but purposeful OD immunization can lead to a substantial antibody response. Here, we map the antibody generated following immunization with a clade C OD. In contrast to published data for the clade B OD, the majority of the polyclonal response to the complete clade C OD is to the V3 loop; deletion of the loop substantially reduces immunogenicity. When the loop sequence was substituted for the epitope for 2F5, a well-characterized human cross-neutralizing mAb, a polyclonal response to the epitope was generated. A panel of mAbs against the clade C OD identified two mAbs that reacted with the loop and were neutralizing for clade C but not B isolates. Other mAbs recognized both linear and conformational epitopes in the OD. We conclude that, as for complete gp120, V3 immunodominance is a property of OD immunogens, that the responses can be neutralizing and that it could be exploited for the presentation of other epitopes.
Resumo:
The confined crystallization of poly(ethylene oxide) (PEO) in predominantly spherical microdomains formed by several diblock copolymers was studied and compared. Two polybutadiene-b-poly(ethylene oxide) diblock copolymers were prepared by sequential anionic polymerization (with approximately 90 and 80 wt % polybutadiene (PB)). These were compared to equivalent samples after catalytic hydrogenation that produced double crystalline polyethylene-b-poly(ethylene oxide) diblock copolymers. Both systems are segregated into microdomains as indicated by small-angle X-ray scattering (SAXS) experiments performed in the melt and at lower temperatures. However, the PB-b-PEO systems exhibited a higher degree of order in the melt. A predominantly spherical morphology of PEO in a PB or a PE matrix was observed by both SAXS and transmission electron microscopy, although a possibly mixed morphology (spheres and cylinders) was formed when the PEO composition was close to the cylinder-sphere domain transitional composition as indicated by SAXS. Differential scanning calorimetry experiments showed that a fractionated crystallization process for the PEO occurred in all samples, indicating that the PE cannot nucleate PEO in these diblock copolymers. A novel result was the observation of a subsequent fractionated melting that reflected the crystallization process. Sequential isothermal crystallization experiments allowed us to thermally separate at least three different crystallization and melting peaks for the PEO microdomains. The lowest melting point fraction was the most important in terms of quantity and corresponded to the crystallization of isolated PEO spheres (or cylinders) that were either superficially or homogeneously nucleated. This was confirmed by Avrami index values of approximately 1. The isothermal crystallization results indicate that the PE matrix restricts the crystallization of the covalently bonded PEO to a higher degree compared to PB.
Resumo:
The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Ho. man theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX ( where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-bPCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.
Resumo:
Objective: Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Methods: Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0–7.4 and inflammatory cytokine secretion and NF-κB activity were measured. Results: A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. Conclusion: A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans.
Resumo:
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.
Resumo:
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution.
Resumo:
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Evidence has been mounting for peripheral functions for tachykinins, a family of neuropeptides including substance P (SP), neurokinin A, and neurokinin B, which are recognized for their roles in the central and peripheral nervous system. The recent discovery of 4 new members of this family, the endokinins (EKA, B, C, and 13), which are distributed peripherally, adds support to the notion that tachykinins have physiologic/endocrine roles in the periphery. In the present study we report a fundamental new function for tachykinins in the regulation of platelet function. We show that SP stimulates platelet aggregation, and underlying this is the intracellular mobilization of calcium and degranulation. We demonstrate the presence of the tachykinin receptors NK1 and NK3 in platelets and present evidence for the involvement of NK1 in SP-mediated platelet aggregation. Platelets were found to contain SP-like immunoreactivity that is secreted upon activation implicating SP-like substances in the autocrine/paracrine regulation of these cells. Indeed, NK1-blocking antibodies inhibited aggregation in response to other agonists. Of particular note is the observation that EKA/B cross-react in the SP immunoassay and are also able to stimulate platelet activation. Together our data implicate tachykinins, specifically SP and EKA/B, in the regulation of platelet function. (C) 2004 by The American Society of Hematology.
Resumo:
PDGF is a potent chemotactic mitogen and a strong inductor of fibroblast motility. In Swiss 3T3 fibroblasts, exposure to PDGF but not EGF or IGF-1 causes a rapid loss of actin stress fibers (SFs) and focal adhesions (FAs), which is followed by the development of retractile dendritic protrusions and induction of motility. The PDGF-specific actin reorganization was blocked by inhibition of Src-kinase and the 26S proteasome. PDGF induced Src-dependent association between the multifunctional transcription/translation regulator hnRNP-K and the mRNA-encoding myosin regulatory light-chain (MRLC)-interacting protein (MIR), a E3-ubiquitin ligase that is MRLC specific. This in turn rapidly increased MIR expression, and led to ubiquitination and proteasome-mediated degradation of MRLC. Downregulation of MIR by RNA muting prevented the reorganization of actin structures and severely reduced the migratory and wound-healing potential of PDGF-treated cells. The results show that activation of MIR and the resulting removal of diphosphorylated MRLC are essential for PDGF to instigate and maintain control over the actin-myosin-based contractile system in Swiss 3T3 fibroblasts. The PDGF induced protein destabilization through the regulation of hnRNP-K controlled ubiquitin-ligase translation identifies a novel pathway by which external stimuli can regulate phenotypic development through rapid, organelle-specific changes in the activity and stability of cytoskeletal regulators.