18 resultados para Linear matrix inequalities (LMI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix isolation IR spectroscopy has been used to study the vacuum pyrolysis of 1,1,3,3-tetramethyldisiloxane (L1), 1,1,3,3,5,5-hexamethyltrisiloxane (L2) and 3H,5H-octamethyltetrasiloxane (L3) at ca. 1000 K in a flow reactor at low pressures. The hydrocarbons CH3, CH4, C2H2, C2H4, and C2H6 were observed as prominent pyrolysis products in all three systems, and amongst the weaker features are bands arising from the methylsilanes Me2SiH2 (for L1 and L2) and Me3SiH (for L3). The fundamental of SiO was also observed very weakly. By use of quantum chemical calculations combined with earlier kinetic models, mechanisms have been proposed involving the intermediacy of silanones Me2Si = O and MeSiH = O. Model calculations on the decomposition pathways of H3SiOSiH3 and H3SiOSiH2OSiH3 show that silanone elimination is favoured over silylene extrusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many scientific and engineering applications involve inverting large matrices or solving systems of linear algebraic equations. Solving these problems with proven algorithms for direct methods can take very long to compute, as they depend on the size of the matrix. The computational complexity of the stochastic Monte Carlo methods depends only on the number of chains and the length of those chains. The computing power needed by inherently parallel Monte Carlo methods can be satisfied very efficiently by distributed computing technologies such as Grid computing. In this paper we show how a load balanced Monte Carlo method for computing the inverse of a dense matrix can be constructed, show how the method can be implemented on the Grid, and demonstrate how efficiently the method scales on multiple processors. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present extensive molecular dynamics simulations of the dynamics of diluted long probe chains entangled with a matrix of shorter chains. The chain lengths of both components are above the entanglement strand length, and the ratio of their lengths is varied over a wide range to cover the crossover from the chain reptation regime to tube Rouse motion regime of the long probe chains. Reducing the matrix chain length results in a faster decay of the dynamic structure factor of the probe chains, in good agreement with recent neutron spin echo experiments. The diffusion of the long chains, measured by the mean square displacements of the monomers and the centers of mass of the chains, demonstrates a systematic speed-up relative to the pure reptation behavior expected for monodisperse melts of sufficiently long polymers. On the other hand, the diffusion of the matrix chains is only weakly perturbed by the diluted long probe chains. The simulation results are qualitatively consistent with the theoretical predictions based on constraint release Rouse model, but a detailed comparison reveals the existence of a broad distribution of the disentanglement rates, which is partly confirmed by an analysis of the packing and diffusion of the matrix chains in the tube region of the probe chains. A coarse-grained simulation model based on the tube Rouse motion model with incorporation of the probability distribution of the tube segment jump rates is developed and shows results qualitatively consistent with the fine scale molecular dynamics simulations. However, we observe a breakdown in the tube Rouse model when the short chain length is decreased to around N-S = 80, which is roughly 3.5 times the entanglement spacing N-e(P) = 23. The location of this transition may be sensitive to the chain bending potential used in our simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bit-level processing (BLP) based linear CDMA detector is derived following the principle of minimum variance distortionless response (MVDR). The combining taps for the MVDR detector are determined from (1) the covariance matrix of the matched filter output, and (2) the corresponding row (or column) of the user correlation matrix. Due to the interference suppression capability of MVDR and the fact that no inversion of the user correlation matrix is involved, the influence of the synchronisation errors is greatly reduced. The detector performance is demonstrated via computer simulations (both synchronisation errors and intercell interference are considered).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a method for simulating multivariate samples that have exact means, covariances, skewness and kurtosis. We introduce a new class of rectangular orthogonal matrix which is fundamental to the methodology and we call these matrices L matrices. They may be deterministic, parametric or data specific in nature. The target moments determine the L matrix then infinitely many random samples with the same exact moments may be generated by multiplying the L matrix by arbitrary random orthogonal matrices. This methodology is thus termed “ROM simulation”. Considering certain elementary types of random orthogonal matrices we demonstrate that they generate samples with different characteristics. ROM simulation has applications to many problems that are resolved using standard Monte Carlo methods. But no parametric assumptions are required (unless parametric L matrices are used) so there is no sampling error caused by the discrete approximation of a continuous distribution, which is a major source of error in standard Monte Carlo simulations. For illustration, we apply ROM simulation to determine the value-at-risk of a stock portfolio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical methods are described for determining robust, or well-conditioned, solutions to the problem of pole assignment by state feedback. The solutions obtained are such that the sensitivity of the assigned poles to perturbations in the system and gain matrices is minimized. It is shown that for these solutions, upper bounds on the norm of the feedback matrix and on the transient response are also minimized and a lower bound on the stability margin is maximized. A measure is derived which indicates the optimal conditioning that may be expected for a particular system with a given set of closed-loop poles, and hence the suitability of the given poles for assignment.