49 resultados para Hilbert Cube
Resumo:
We study complete continuity properties of operators onto ℓ2 and prove several results in the Dunford–Pettis theory of JB∗-triples and their projective tensor products, culminating in characterisations of the alternative Dunford–Pettis property for where E and F are JB∗-triples.
Resumo:
We solve an initial-boundary problem for the Klein-Gordon equation on the half line using the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas. The approach we present can be also used to solve more complicated boundary value problems for this equation, such as problems posed on time-dependent domains. Furthermore, it can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this respect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon equation.
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Generalized cubes are a subclass of hypercube-like networks, which include some hypercube variants as special cases. Let theta(G)(k) denote the minimum number of nodes adjacent to a set of k vertices of a graph G. In this paper, we prove theta(G)(k) >= -1/2k(2) + (2n - 3/2)k - (n(2) - 2) for each n-dimensional generalized cube and each integer k satisfying n + 2 <= k <= 2n. Our result is an extension of a result presented by Fan and Lin [J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176-184]. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Comparison-based diagnosis is an effective approach to system-level fault diagnosis. Under the Maeng-Malek comparison model (NM* model), Sengupta and Dahbura proposed an O(N-5) diagnosis algorithm for general diagnosable systems with N nodes. Thanks to lower diameter and better graph embedding capability as compared with a hypercube of the same size, the crossed cube has been a promising candidate for interconnection networks. In this paper, we propose a fault diagnosis algorithm tailored for crossed cube connected multicomputer systems under the MM* model. By introducing appropriate data structures, this algorithm runs in O(Nlog(2)(2) N) time, which is linear in the size of the input. As a result, this algorithm is significantly superior to the Sengupta-Dahbura's algorithm when applied to crossed cube systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Since the conclusion of its 14-year civil war in 2003, Liberia has struggled economically. Jobs are in short supply and operational infrastructural services, such as electricity and running water, are virtually nonexistent. The situation has proved especially challenging for the scores of people who fled the country in the 1990s to escape the violence and who have since returned to re-enter their lives. With few economic prospects on hand, many have elected to enter the artisanal diamond mining sector, which has earned notoriety for perpetuating the country's civil war. This article critically reflects on the fate of these Liberians, many of whom, because of a lack of government support, finances, manpower and technological resources, have forged deals with hired labourers to work artisanal diamond fields. Specifically, in exchange for meals containing locally grown rice and a Maggi (soup) cube, hired hands mine diamondiferous territories, splitting the revenues accrued from the sales of recovered stones amongst themselves and the individual ‘claimholder’ who hired them. Although this cycle—referred to here as ‘diamond mining, rice farming and a Maggi cube’—helps to buffer against poverty, few of the parties involved will ever progress beyond a subsistence level
Resumo:
Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.
Resumo:
We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.
Resumo:
This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω) and tildeHs(Ω), for s in R and an open Ω in R^n. We exhibit examples in one and two dimensions of sets Ω for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large.
Resumo:
The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly proportional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the heating enhances this surface response. The time-varying part is independent of the heating and satisfies the usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings from this theory.